Suppr超能文献

人类兴趣动态中规模法则的出现。

Emergence of scaling in human-interest dynamics.

作者信息

Zhao Zhi-Dan, Yang Zimo, Zhang Zike, Zhou Tao, Huang Zi-Gang, Lai Ying-Cheng

机构信息

1] Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China [2] School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.

出版信息

Sci Rep. 2013 Dec 11;3:3472. doi: 10.1038/srep03472.

Abstract

Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical "Big Data" sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction.

摘要

人类行为往往由人类兴趣驱动。尽管最近在探索人类行为动态方面付出了巨大努力,但对于人类兴趣动态却知之甚少,部分原因是从观察中了解人类思维极其困难。然而,大规模数据的可用性,如来自电子商务和智能手机通信的数据,使得探究和量化人类兴趣动态成为可能。利用三个典型的“大数据”集,我们研究了与人类兴趣动态相关的标度行为。特别是,从数据集中我们发现了与三个基本量相关的肥尾(可能是幂律)分布:(1)持续兴趣的时长,(2)访问特定兴趣的返回时间,以及(3)兴趣排名和转变。我们认为人类兴趣动态有三个基本要素:对先前访问兴趣的优先返回、惯性效应和对新兴趣的探索。我们开发了一个包含这三个要素的有偏随机游走模型,以解释观察到的肥尾分布。我们的研究是理解人类兴趣背后动态过程的首次尝试,这在科学与工程、商业以及国防等领域的特定任务(如推荐和人类行为预测)方面具有重要应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdb8/3858797/97c564d03a3d/srep03472-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验