Suppr超能文献

从社交媒体签到数据中揭示城市间出行模式和空间相互作用

Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data.

作者信息

Liu Yu, Sui Zhengwei, Kang Chaogui, Gao Yong

机构信息

Institute of Remote Sensing and Geographical Information Systems, Peking University, Beijing, China.

出版信息

PLoS One. 2014 Jan 17;9(1):e86026. doi: 10.1371/journal.pone.0086026. eCollection 2014.

Abstract

The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips.

摘要

本文基于一个实证数据集,从人类移动模式和空间嵌入网络的角度重新审视了空间相互作用和距离衰减。我们从一个签到数据集中提取了中国全国范围内的城市间移动情况,该数据集涵盖了370个城市中的50万人,以分析出行和空间相互作用的潜在模式。通过拟合引力模型,我们发现观察到的空间相互作用受幂律距离衰减效应的支配。所得到的引力模型也紧密再现了指数出行位移分布。然而,个体的移动可能并不遵循相同的距离衰减效应,从而导致生态谬误。我们还构建了一个空间网络,其中边权重表示相互作用强度。从该网络中检测到的社区在空间上具有凝聚力,并且大致与省份边界一致。我们将这种模式归因于省内和省际出行之间不同的距离衰减参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3c/3895021/bd6391f23bfe/pone.0086026.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验