Suppr超能文献

用于材料搜索的量子图神经网络模型

Quantum Graph Neural Network Models for Materials Search.

作者信息

Ryu Ju-Young, Elala Eyuel, Rhee June-Koo Kevin

机构信息

School of Electrical Engineering & ITRC of Quantum Computing for AI, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Qunova Computing, Incorporated, 193 Munji-ro, Yuseong-gu, Daejeon 34051, Republic of Korea.

出版信息

Materials (Basel). 2023 Jun 10;16(12):4300. doi: 10.3390/ma16124300.

Abstract

Inspired by classical graph neural networks, we discuss a novel quantum graph neural network (QGNN) model to predict the chemical and physical properties of molecules and materials. QGNNs were investigated to predict the energy gap between the highest occupied and lowest unoccupied molecular orbitals of small organic molecules. The models utilize the equivariantly diagonalizable unitary quantum graph circuit (EDU-QGC) framework to allow discrete link features and minimize quantum circuit embedding. The results show QGNNs can achieve lower test loss compared to classical models if a similar number of trainable variables are used, and converge faster in training. This paper also provides a review of classical graph neural network models for materials research and various QGNNs.

摘要

受经典图神经网络的启发,我们讨论了一种新颖的量子图神经网络(QGNN)模型,用于预测分子和材料的化学和物理性质。研究了QGNN以预测小分子有机分子的最高占据分子轨道和最低未占据分子轨道之间的能隙。这些模型利用等变可对角化酉量子图电路(EDU-QGC)框架,以允许离散链接特征并最小化量子电路嵌入。结果表明,如果使用相似数量的可训练变量,QGNN与经典模型相比可以实现更低的测试损失,并且在训练中收敛更快。本文还综述了用于材料研究的经典图神经网络模型和各种QGNN。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1982/10304445/5405813f33d9/materials-16-04300-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验