Suppr超能文献

用于从晶体结构直接预测光谱的通用集成嵌入图神经网络

Universal Ensemble-Embedding Graph Neural Network for Direct Prediction of Optical Spectra from Crystal Structures.

作者信息

Hung Nguyen Tuan, Okabe Ryotaro, Chotrattanapituk Abhijatmedhi, Li Mingda

机构信息

Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan.

Quantum Measurement Group, MIT, Cambridge, MA 02139-4307, USA.

出版信息

Adv Mater. 2024 Nov;36(46):e2409175. doi: 10.1002/adma.202409175. Epub 2024 Sep 12.

Abstract

Optical properties in solids, such as refractive index and absorption, hold vast applications ranging from solar panels to sensors, photodetectors, and transparent displays. However, first-principles computation of optical properties from crystal structures is a complex task due to the high convergence criteria and computational cost. Recent progress in machine learning shows promise in predicting material properties, yet predicting optical properties from crystal structures remains challenging due to the lack of efficient atomic embeddings. Here, Graph Neural Network for Optical spectra prediction (GNNOpt) is introduced, an equivariant graph-neural-network architecture featuring universal embedding with automatic optimization. This enables high-quality optical predictions with a dataset of only 944 materials. GNNOpt predicts all optical properties based on the Kramers-Krönig relations, including absorption coefficient, complex dielectric function, complex refractive index, and reflectance. The trained model is applied to screen photovoltaic materials based on spectroscopic limited maximum efficiency and search for quantum materials based on quantum weight. First-principles calculations validate the efficacy of the GNNOpt model, demonstrating excellent agreement in predicting the optical spectra of unseen materials. The discovery of new quantum materials with high predicted quantum weight, such as SiOs, which host exotic quasiparticles with multifold nontrivial topology, demonstrates the potential of GNNOpt in predicting optical properties across a broad range of materials and applications.

摘要

固体中的光学性质,如折射率和吸收率,在从太阳能电池板到传感器、光电探测器和透明显示器等众多领域都有广泛应用。然而,由于高收敛标准和计算成本,从晶体结构进行光学性质的第一性原理计算是一项复杂的任务。机器学习的最新进展在预测材料性质方面显示出前景,但由于缺乏有效的原子嵌入,从晶体结构预测光学性质仍然具有挑战性。在此,介绍了用于光谱预测的图神经网络(GNNOpt),这是一种具有自动优化的通用嵌入的等变图神经网络架构。这使得仅使用944种材料的数据集就能进行高质量的光学预测。GNNOpt基于克莱默斯-克勒尼希关系预测所有光学性质,包括吸收系数、复介电函数、复折射率和反射率。训练后的模型用于基于光谱限制最大效率筛选光伏材料,并基于量子权重搜索量子材料。第一性原理计算验证了GNNOpt模型的有效性,在预测未见材料的光谱方面显示出极好的一致性。具有高预测量子权重的新量子材料的发现,如承载具有多重非平凡拓扑结构的奇异准粒子的SiO,证明了GNNOpt在预测广泛材料和应用的光学性质方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验