Carreón-Rodríguez Ofelia E, Gosset Guillermo, Escalante Adelfo, Bolívar Francisco
Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico.
Microorganisms. 2023 Jun 15;11(6):1588. doi: 10.3390/microorganisms11061588.
is the best-known model for the biotechnological production of many biotechnological products, including housekeeping and heterologous primary and secondary metabolites and recombinant proteins, and is an efficient biofactory model to produce biofuels to nanomaterials. Glucose is the primary substrate used as the carbon source for laboratory and industrial cultivation of for production purposes. Efficient growth and associated production and yield of desired products depend on the efficient sugar transport capabilities, sugar catabolism through the central carbon catabolism, and the efficient carbon flux through specific biosynthetic pathways. The genome of MG1655 is 4,641,642 bp, corresponding to 4702 genes encoding 4328 proteins. The EcoCyc database describes 532 transport reactions, 480 transporters, and 97 proteins involved in sugar transport. Nevertheless, due to the high number of sugar transporters, uses preferentially few systems to grow in glucose as the sole carbon source. nonspecifically transports glucose from the extracellular medium into the periplasmic space through the outer membrane porins. Once in periplasmic space, glucose is transported into the cytoplasm by several systems, including the phosphoenolpyruvate-dependent phosphotransferase system (PTS), the ATP-dependent cassette (ABC) transporters, and the major facilitator (MFS) superfamily proton symporters. In this contribution, we review the structures and mechanisms of the central glucose transport systems, including the regulatory circuits recruiting the specific use of these transport systems under specific growing conditions. Finally, we describe several successful examples of transport engineering, including introducing heterologous and non-sugar transport systems for producing several valuable metabolites.
是许多生物技术产品生物技术生产中最著名的模型,这些产品包括管家型和异源的初级和次级代谢产物以及重组蛋白,并且是生产从生物燃料到纳米材料的高效生物工厂模型。葡萄糖是用于实验室和工业培养以进行生产目的的主要底物,作为碳源。高效生长以及所需产品的相关生产和产量取决于有效的糖转运能力、通过中心碳分解代谢的糖分解代谢以及通过特定生物合成途径的有效碳通量。MG1655的基因组为4,641,642 bp,对应于4702个编码4328种蛋白质的基因。EcoCyc数据库描述了532种转运反应、480种转运蛋白和97种参与糖转运的蛋白质。然而,由于糖转运蛋白数量众多,在以葡萄糖作为唯一碳源生长时,优先使用少数几种系统。通过外膜孔蛋白将葡萄糖从细胞外介质非特异性地转运到周质空间。一旦进入周质空间,葡萄糖通过几种系统被转运到细胞质中,包括磷酸烯醇丙酮酸依赖性磷酸转移酶系统(PTS)、ATP结合盒(ABC)转运蛋白和主要易化子(MFS)超家族质子同向转运体。在本论文中,我们综述了大肠杆菌中心葡萄糖转运系统的结构和机制,包括在特定生长条件下招募这些转运系统特定用途的调控回路。最后,我们描述了几个转运工程的成功例子,包括引入异源和非糖转运系统来生产几种有价值的代谢产物。