Suppr超能文献

基于刮刀技术制备的金修饰 ZnO 量子点厚膜的物理特性、蓝绿带发射和光催化活性。

Physical Characteristics, Blue-Green Band Emission and Photocatalytic Activity of Au-Decorated ZnO Quantum Dots-Based Thick Films Prepared Using the Doctor Blade Technique.

机构信息

Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

Nano Particles Technology Laboratory, School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea.

出版信息

Molecules. 2023 Jun 8;28(12):4644. doi: 10.3390/molecules28124644.

Abstract

Nanoscale ZnO is a vital semiconductor material whose versatility can be enhanced by sensitizing it with metals, especially noble metals, such as gold (Au). ZnO quantum dots were prepared via a simple co-precipitation technique using 2-methoxy ethanol as the solvent and KOH as the pH regulator for hydrolysis. The synthesized ZnO quantum dots were deposited onto glass slides using a simple doctor blade technique. Subsequently, the films were decorated with gold nanoparticles of different sizes using a drop-casting method. The resultant films were characterized via various strategies to obtain structural, optical, morphological, and particle size information. The X-ray diffraction (XRD) reveals the formation of the hexagonal crystal structure of ZnO. Upon Au nanoparticles loading, peaks due to gold are also observed. The optical properties study shows a slight change in the band gap due to Au loading. Nanoscale sizes of particles have been confirmed through electron microscope studies. P.L. studies display blue and blue-green band emissions. The significant degradation efficiency of 90.2% methylene blue (M.B.) was attained in natural pH in 120 min using pure ZnO catalyst while one drop gold-loaded catalysts, ZnO: Au 5 nm, ZnO: Au 7 nm, ZnO: Au 10 nm and ZnO: Au 15 nm, delivered M.B. degradation efficiency of 74.5% (in 245 min), 63.8% (240 min), 49.6% (240 min) and 34.0% (170 min) in natural pH, respectively. Such films can be helpful in conventional catalysis, photocatalysis, gas sensing, biosensing, and photoactive applications.

摘要

纳米级 ZnO 是一种至关重要的半导体材料,通过敏化它与金属(尤其是贵金属,如金(Au))结合,可以提高其多功能性。使用 2-甲氧基乙醇作为溶剂和 KOH 作为水解的 pH 调节剂,通过简单的共沉淀技术制备 ZnO 量子点。通过简单的刮刀技术将合成的 ZnO 量子点沉积在载玻片上。随后,使用滴铸法将不同尺寸的金纳米颗粒修饰到薄膜上。通过各种策略对所得薄膜进行了表征,以获得结构、光学、形态和粒径信息。X 射线衍射(XRD)揭示了 ZnO 六方晶体结构的形成。在负载 Au 纳米颗粒后,也观察到了金的峰。光学性质研究表明,由于 Au 负载,带隙略有变化。通过电子显微镜研究证实了颗粒的纳米级尺寸。PL 研究显示出蓝移和蓝绿带发射。在自然 pH 下,使用纯 ZnO 催化剂在 120 分钟内实现了 90.2%的亚甲基蓝(M.B.)的显著降解效率,而负载了 1 滴 Au 的催化剂 ZnO:Au 5nm、ZnO:Au 7nm、ZnO:Au 10nm 和 ZnO:Au 15nm 则分别在 245 分钟、240 分钟、240 分钟和 170 分钟内实现了 74.5%、63.8%、49.6%和 34.0%的 M.B.降解效率。这些薄膜在传统催化、光催化、气体传感、生物传感和光活性应用方面可能会有所帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26d9/10302373/62a6a08849ce/molecules-28-04644-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验