Liu Tao, Chen Wenjun, Li Kai, Long Shijun, Li Xuefeng, Huang Yiwan
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China.
Polymers (Basel). 2023 Jun 10;15(12):2644. doi: 10.3390/polym15122644.
Polyampholyte (PA) hydrogels are randomly copolymerized from anionic and cationic monomers, showing good mechanical properties owing to the existence of numerous ionic bonds in the networks. However, relatively tough PA gels can be synthesized successfully only at high monomer concentrations (), where relatively strong chain entanglements exist to stabilize the primary supramolecular networks. This study aims to toughen weak PA gels with relatively weak primary topological entanglements (at relatively low ) via a secondary equilibrium approach. According to this approach, an as-prepared PA gel is first dialyzed in a FeCl solution to reach a swelling equilibrium and then dialyzed in sufficient deionized water to remove excess free ions to achieve a new equilibrium, resulting in the modified PA gels. It is proved that the modified PA gels are eventually constructed by both ionic and metal coordination bonds, which could synergistically enhance the chain interactions and enable the network toughening. Systematic studies indicate that both and FeCl concentration (CFeCl3) influence the enhancement effectiveness of the modified PA gels, although all the gels could be dramatically enhanced. The mechanical properties of the modified PA gel could be optimized at = 2.0 M and CFeCl3 = 0.3 M, where the Young's modulus, tensile fracture strength, and work of tension are improved by 1800%, 600%, and 820%, respectively, comparing to these of the original PA gel. By selecting a different PA gel system and diverse metal ions (i.e., Al, Mg, Ca), we further prove that the proposed approach is generally appliable. A theoretical model is used to understand the toughening mechanism. This work well extends the simple yet general approach for the toughening of weak PA gels with relatively weak chain entanglements.
聚两性电解质(PA)水凝胶由阴离子和阳离子单体随机共聚而成,由于网络中存在大量离子键,因而具有良好的机械性能。然而,只有在高单体浓度()下才能成功合成相对坚韧的PA凝胶,此时存在相对较强的链缠结以稳定初级超分子网络。本研究旨在通过二次平衡方法使具有相对较弱初级拓扑缠结(在相对较低的情况下)的弱PA凝胶增韧。根据该方法,首先将制备好的PA凝胶在FeCl溶液中透析至溶胀平衡,然后在足量去离子水中透析以去除过量的游离离子,从而达到新的平衡,得到改性PA凝胶。事实证明,改性PA凝胶最终由离子键和金属配位键共同构成,这两种键可协同增强链间相互作用并实现网络增韧。系统研究表明,尽管所有凝胶都能得到显著增强,但和FeCl浓度(CFeCl3)均会影响改性PA凝胶的增强效果。改性PA凝胶的机械性能在 = 2.0 M和CFeCl3 = 0.3 M时可达到最佳,与原始PA凝胶相比,此时的杨氏模量、拉伸断裂强度和拉伸功分别提高了1800%、600%和820%。通过选择不同的PA凝胶体系和多种金属离子(即Al、Mg、Ca),我们进一步证明了所提出的方法具有普遍适用性。使用理论模型来理解增韧机理。这项工作很好地扩展了一种简单而通用的方法,用于增韧具有相对较弱链缠结的弱PA凝胶。