Bajoria Sakshi, Kumru Ozan S, Doering Jennifer, Berman Katherine, Slyke Greta Van, Prigodich Anneka, Rodriguez-Aponte Sergio A, Kleanthous Harry, Love J Christopher, Mantis Nicholas J, Joshi Sangeeta B, Volkin David B
Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA.
Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.
Vaccines (Basel). 2023 May 26;11(6):1030. doi: 10.3390/vaccines11061030.
Aluminum-salt vaccine adjuvants (alum) are commercially available as micron-sized particles with varying chemical composition and crystallinity. There are reports of enhanced adjuvanticity when the alum's particle size is reduced to the nanometer range. Previously, we demonstrated that a recombinant receptor-binding domain (RBD)-based COVID-19 vaccine candidate (RBD-J; RBD-L452K-F490W) formulated with aluminum hydroxide (Alhydrogel; AH) and CpG 1018™ (CpG) adjuvants induced potent neutralizing antibody responses in mice yet displayed instability during storage. In this work, we evaluated whether sonication of AH to the nanometer size range (nanoAH) could further enhance immunogenicity or improve storage stability of the above formulation. The addition of CpG to nanoAH (at mouse doses), however, caused re-agglomeration of nanoAH. AH-CpG interactions were evaluated by Langmuir binding isotherms and zeta potential measurements, and stabilized nanoAH + CpG formulations of RBD-J were then designed by (1) optimizing CpG:Aluminum dose ratios or (2) adding a small-molecule polyanion (phytic acid, PA). Compared with the micron-sized AH + CpG formulation, the two stabilized nanoAH + CpG formulations of RBD-J demonstrated no enhancement in SARS-CoV-2 pseudovirus neutralizing titers in mice, but the PA-containing nanoAH + CpG formulation showed improved RBD-J storage stability trends (at 4, 25, and 37 °C). The formulation protocols presented herein can be employed to evaluate the potential benefits of the nanoAH + CpG adjuvant combination with other vaccine antigens in different animal models.
铝盐疫苗佐剂(明矾)在商业上以具有不同化学成分和结晶度的微米级颗粒形式提供。有报道称,当明矾的粒径减小到纳米范围时,其佐剂活性会增强。此前,我们证明,一种基于重组受体结合域(RBD)的新型冠状病毒肺炎候选疫苗(RBD-J;RBD-L452K-F490W)与氢氧化铝(Alhydrogel;AH)和CpG 1018™(CpG)佐剂一起配制,可在小鼠体内诱导强效中和抗体反应,但在储存期间表现出不稳定性。在这项工作中,我们评估了将AH超声处理至纳米尺寸范围(nanoAH)是否可以进一步增强上述制剂的免疫原性或改善其储存稳定性。然而,在nanoAH中添加CpG(以小鼠剂量)会导致nanoAH重新团聚。通过朗缪尔结合等温线和zeta电位测量评估AH与CpG的相互作用,然后通过(1)优化CpG:铝剂量比或(2)添加小分子聚阴离子(植酸,PA)来设计RBD-J的稳定化nanoAH + CpG制剂。与微米级AH + CpG制剂相比,RBD-J的两种稳定化nanoAH + CpG制剂在小鼠体内的严重急性呼吸综合征冠状病毒2假病毒中和效价没有增强,但含PA的nanoAH + CpG制剂显示出改善的RBD-J储存稳定性趋势(在4、25和37°C下)。本文介绍的制剂方案可用于评估nanoAH + CpG佐剂组合与其他疫苗抗原在不同动物模型中的潜在益处。
Vaccines (Basel). 2023-9-25
Vaccines (Basel). 2023-1-11
Immunol Rev. 2022-9
Hum Vaccin Immunother. 2022-11-30
Semin Immunol. 2021-8
Proc Natl Acad Sci U S A. 2021-9-21