The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China.
Cereb Cortex. 2023 Aug 8;33(16):9583-9598. doi: 10.1093/cercor/bhad228.
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive approach to modulate brain activity and behavior in humans. Still, how individual resting-state brain dynamics after rTMS evolves across different functional configurations is rarely studied. Here, using resting state fMRI data from healthy subjects, we aimed to examine the effects of rTMS to individual large-scale brain dynamics. Using Topological Data Analysis based Mapper approach, we construct the precise dynamic mapping (PDM) for each participant. To reveal the relationship between PDM and canonical functional representation of the resting brain, we annotated the graph using relative activation proportion of a set of large-scale resting-state networks (RSNs) and assigned the single brain volume to corresponding RSN-dominant or a hub state (not any RSN was dominant). Our results show that (i) low-frequency rTMS could induce changed temporal evolution of brain states; (ii) rTMS didn't alter the hub-periphery configurations underlined resting-state brain dynamics; and (iii) the rTMS effects on brain dynamics differ across the left frontal and occipital lobe. In conclusion, low-frequency rTMS significantly alters the individual temporo-spatial dynamics, and our finding further suggested a potential target-dependent alteration of brain dynamics. This work provides a new perspective to comprehend the heterogeneous effect of rTMS.
重复经颅磁刺激(rTMS)是一种非侵入性的方法,可以调节人类大脑的活动和行为。然而,rTMS 后个体静息态大脑动力学如何在不同的功能配置下演变,这方面的研究还很少。在这里,我们使用健康受试者的静息态 fMRI 数据,旨在研究 rTMS 对个体大尺度脑动力学的影响。使用基于拓扑数据分析的 Mapper 方法,我们为每个参与者构建精确的动态映射(PDM)。为了揭示 PDM 与静息大脑的典型功能表示之间的关系,我们使用一组大规模静息态网络(RSN)的相对激活比例对图谱进行注释,并将单个脑体积分配给相应的 RSN 主导或枢纽状态(没有任何 RSN 占主导地位)。我们的结果表明:(i)低频 rTMS 可以诱导大脑状态的时间演化发生变化;(ii)rTMS 并没有改变静息态大脑动力学下的枢纽-外围结构;(iii)rTMS 对大脑动力学的影响在左额叶和枕叶之间存在差异。总之,低频 rTMS 显著改变了个体的时空间动力学,我们的发现进一步表明,大脑动力学可能存在潜在的靶向依赖性改变。这项工作为理解 rTMS 的异质性效应提供了一个新的视角。