Riseberg Emily, Melamed Rachel D, James Katherine A, Alderete Tanya L, Corlin Laura
Department of Public Health and Community Medicine, Tufts University, Boston, MA, USA.
Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Epidemiol Methods. 2023 Jun 27;12(1):20220133. doi: 10.1515/em-2022-0133. eCollection 2023 Jan.
Specifying causal models to assess relationships among metal mixtures and cardiometabolic outcomes requires evidence-based models of the causal structures; however, such models have not been previously published. The objective of this study was to develop and evaluate a directed acyclic graph (DAG) diagraming metal mixture exposure and cardiometabolic outcomes.
We conducted a literature search to develop the DAG of metal mixtures and cardiometabolic outcomes. To evaluate consistency of the DAG, we tested the suggested conditional independence statements using linear and logistic regression analyses with data from the San Luis Valley Diabetes Study (SLVDS; n=1795). We calculated the proportion of statements supported by the data and compared this to the proportion of conditional independence statements supported by 1,000 DAGs with the same structure but randomly permuted nodes. Next, we used our DAG to identify minimally sufficient adjustment sets needed to estimate the association between metal mixtures and cardiometabolic outcomes (i.e., cardiovascular disease, fasting glucose, and systolic blood pressure). We applied them to the SLVDS using Bayesian kernel machine regression, linear mixed effects, and Cox proportional hazards models.
From the 42 articles included in the review, we developed an evidence-based DAG with 74 testable conditional independence statements (43 % supported by SLVDS data). We observed evidence for an association between As and Mn and fasting glucose.
We developed, tested, and applied an evidence-based approach to analyze associations between metal mixtures and cardiometabolic health.
指定因果模型以评估金属混合物与心脏代谢结局之间的关系需要基于证据的因果结构模型;然而,此类模型此前尚未发表。本研究的目的是开发并评估一个描述金属混合物暴露与心脏代谢结局的有向无环图(DAG)。
我们进行了文献检索以构建金属混合物与心脏代谢结局的DAG。为评估DAG的一致性,我们使用来自圣路易斯谷糖尿病研究(SLVDS;n = 1795)的数据,通过线性和逻辑回归分析来检验所建议的条件独立性陈述。我们计算了数据支持的陈述比例,并将其与1000个具有相同结构但节点随机排列的DAG所支持的条件独立性陈述比例进行比较。接下来,我们使用我们的DAG来确定估计金属混合物与心脏代谢结局(即心血管疾病、空腹血糖和收缩压)之间关联所需的最小充分调整集。我们使用贝叶斯核机器回归、线性混合效应和Cox比例风险模型将它们应用于SLVDS。
从纳入综述的42篇文章中,我们开发了一个基于证据的DAG,其中有74个可检验的条件独立性陈述(43%得到SLVDS数据支持)。我们观察到砷和锰与空腹血糖之间存在关联的证据。
我们开发、测试并应用了一种基于证据的方法来分析金属混合物与心脏代谢健康之间的关联。