Suppr超能文献

自动超像素掩模图像建模用于皮肤病变分割。

autoSMIM: Automatic Superpixel-Based Masked Image Modeling for Skin Lesion Segmentation.

出版信息

IEEE Trans Med Imaging. 2023 Dec;42(12):3501-3511. doi: 10.1109/TMI.2023.3290700. Epub 2023 Nov 30.

Abstract

Skin lesion segmentation from dermoscopic images plays a vital role in early diagnoses and prognoses of various skin diseases. However, it is a challenging task due to the large variability of skin lesions and their blurry boundaries. Moreover, most existing skin lesion datasets are designed for disease classification, with relatively fewer segmentation labels having been provided. To address these issues, we propose a novel automatic superpixel-based masked image modeling method, named autoSMIM, in a self-supervised setting for skin lesion segmentation. It explores implicit image features from abundant unlabeled dermoscopic images. autoSMIM begins with restoring an input image with randomly masked superpixels. The policy of generating and masking superpixels is then updated via a novel proxy task through Bayesian Optimization. The optimal policy is subsequently used for training a new masked image modeling model. Finally, we finetune such a model on the downstream skin lesion segmentation task. Extensive experiments are conducted on three skin lesion segmentation datasets, including ISIC 2016, ISIC 2017, and ISIC 2018. Ablation studies demonstrate the effectiveness of superpixel-based masked image modeling and establish the adaptability of autoSMIM. Comparisons with state-of-the-art methods show the superiority of our proposed autoSMIM. The source code is available at https://github.com/Wzhjerry/autoSMIM.

摘要

从皮肤镜图像中进行皮肤损伤分割对于各种皮肤疾病的早期诊断和预后至关重要。然而,由于皮肤损伤及其模糊边界的巨大可变性,这是一项具有挑战性的任务。此外,大多数现有的皮肤损伤数据集是为疾病分类设计的,提供的分割标签相对较少。为了解决这些问题,我们提出了一种新颖的基于自动超像素的掩模图像建模方法,命名为 autoSMIM,用于皮肤损伤分割的自监督设置。它从大量未标记的皮肤镜图像中探索隐式图像特征。autoSMIM 首先通过随机掩蔽超像素来恢复输入图像。然后,通过贝叶斯优化中的新代理任务更新生成和掩蔽超像素的策略。最后,我们在下游皮肤损伤分割任务上微调这样的模型。我们在三个皮肤损伤分割数据集上进行了广泛的实验,包括 ISIC 2016、ISIC 2017 和 ISIC 2018。消融研究证明了基于超像素的掩模图像建模的有效性,并确立了 autoSMIM 的适应性。与最先进的方法的比较表明了我们提出的 autoSMIM 的优越性。源代码可在 https://github.com/Wzhjerry/autoSMIM 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验