Suppr超能文献

带噪声数据的皮肤镜图像皮肤损伤分割。

Skin Lesion Segmentation in Dermoscopic Images with Noisy Data.

机构信息

Missouri University of Science &Technology, Rolla, MO, 65409, USA.

S&A Technologies, Rolla, MO, 65401, USA.

出版信息

J Digit Imaging. 2023 Aug;36(4):1712-1722. doi: 10.1007/s10278-023-00819-8. Epub 2023 Apr 5.

Abstract

We propose a deep learning approach to segment the skin lesion in dermoscopic images. The proposed network architecture uses a pretrained EfficientNet model in the encoder and squeeze-and-excitation residual structures in the decoder. We applied this approach on the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset. This benchmark dataset has been widely used in previous studies. We observed many inaccurate or noisy ground truth labels. To reduce noisy data, we manually sorted all ground truth labels into three categories - good, mildly noisy, and noisy labels. Furthermore, we investigated the effect of such noisy labels in training and test sets. Our test results show that the proposed method achieved Jaccard scores of 0.807 on the official ISIC 2017 test set and 0.832 on the curated ISIC 2017 test set, exhibiting better performance than previously reported methods. Furthermore, the experimental results showed that the noisy labels in the training set did not lower the segmentation performance. However, the noisy labels in the test set adversely affected the evaluation scores. We recommend that the noisy labels should be avoided in the test set in future studies for accurate evaluation of the segmentation algorithms.

摘要

我们提出了一种深度学习方法来分割皮肤镜图像中的皮肤病变。所提出的网络架构在编码器中使用预训练的 EfficientNet 模型,在解码器中使用挤压激励残差结构。我们将这种方法应用于公开的国际皮肤成像协作(ISIC)2017 挑战赛皮肤病变分割数据集。这个基准数据集在以前的研究中被广泛使用。我们观察到许多不准确或嘈杂的地面真实标签。为了减少嘈杂的数据,我们手动将所有地面真实标签分为三类 - 良好、轻度嘈杂和嘈杂标签。此外,我们研究了这种嘈杂标签在训练集和测试集中的影响。我们的测试结果表明,所提出的方法在官方 ISIC 2017 测试集上的 Jaccard 得分为 0.807,在经过整理的 ISIC 2017 测试集上的 Jaccard 得分为 0.832,表现优于以前报道的方法。此外,实验结果表明,训练集中的嘈杂标签不会降低分割性能。然而,测试集中的嘈杂标签会对评估分数产生不利影响。我们建议在未来的研究中避免在测试集中使用嘈杂标签,以准确评估分割算法。

相似文献

1
Skin Lesion Segmentation in Dermoscopic Images with Noisy Data.带噪声数据的皮肤镜图像皮肤损伤分割。
J Digit Imaging. 2023 Aug;36(4):1712-1722. doi: 10.1007/s10278-023-00819-8. Epub 2023 Apr 5.

本文引用的文献

3
Cancer statistics, 2022.癌症统计数据,2022 年。
CA Cancer J Clin. 2022 Jan;72(1):7-33. doi: 10.3322/caac.21708. Epub 2022 Jan 12.
4
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
6
Automatic skin lesion segmentation based on FC-DPN.基于全卷积双路径网络的皮肤病变自动分割
Comput Biol Med. 2020 Aug;123:103762. doi: 10.1016/j.compbiomed.2020.103762. Epub 2020 Jul 17.
9
Skin lesion segmentation using high-resolution convolutional neural network.基于高分辨率卷积神经网络的皮肤损伤分割。
Comput Methods Programs Biomed. 2020 Apr;186:105241. doi: 10.1016/j.cmpb.2019.105241. Epub 2019 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验