Suppr超能文献

生成对抗网络在磁共振图像重建中的应用

[Application of generative adversarial network in magnetic resonance image reconstruction].

作者信息

Cai Xin, Hou Xuewen, Yang Guang, Nie Shengdong

机构信息

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Jun 25;40(3):582-588. doi: 10.7507/1001-5515.202204007.

Abstract

Magnetic resonance imaging (MRI) is an important medical imaging method, whose major limitation is its long scan time due to the imaging mechanism, increasing patients' cost and waiting time for the examination. Currently, parallel imaging (PI) and compress sensing (CS) together with other reconstruction technologies have been proposed to accelerate image acquisition. However, the image quality of PI and CS depends on the image reconstruction algorithms, which is far from satisfying in respect to both the image quality and the reconstruction speed. In recent years, image reconstruction based on generative adversarial network (GAN) has become a research hotspot in the field of magnetic resonance imaging because of its excellent performance. In this review, we summarized the recent development of application of GAN in MRI reconstruction in both single- and multi-modality acceleration, hoping to provide a useful reference for interested researchers. In addition, we analyzed the characteristics and limitations of existing technologies and forecasted some development trends in this field.

摘要

磁共振成像(MRI)是一种重要的医学成像方法,其主要局限性在于成像机制导致扫描时间长,增加了患者的费用和检查等待时间。目前,并行成像(PI)和压缩感知(CS)以及其他重建技术已被提出用于加速图像采集。然而,PI和CS的图像质量取决于图像重建算法,在图像质量和重建速度方面都远不能令人满意。近年来,基于生成对抗网络(GAN)的图像重建因其出色的性能而成为磁共振成像领域的研究热点。在本综述中,我们总结了GAN在MRI重建中单模态和多模态加速应用的最新进展,希望为感兴趣的研究人员提供有用的参考。此外,我们分析了现有技术的特点和局限性,并预测了该领域的一些发展趋势。

相似文献

1
[Application of generative adversarial network in magnetic resonance image reconstruction].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Jun 25;40(3):582-588. doi: 10.7507/1001-5515.202204007.
3
Reconstruction of multicontrast MR images through deep learning.
Med Phys. 2020 Mar;47(3):983-997. doi: 10.1002/mp.14006. Epub 2020 Jan 28.
5
DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1310-1321. doi: 10.1109/TMI.2017.2785879.
6
SwinGAN: A dual-domain Swin Transformer-based generative adversarial network for MRI reconstruction.
Comput Biol Med. 2023 Feb;153:106513. doi: 10.1016/j.compbiomed.2022.106513. Epub 2022 Dec 31.
7
Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction.
Philos Trans A Math Phys Eng Sci. 2021 Jun 28;379(2200):20200203. doi: 10.1098/rsta.2020.0203. Epub 2021 May 10.
8
Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss.
IEEE Trans Med Imaging. 2018 Jun;37(6):1488-1497. doi: 10.1109/TMI.2018.2820120.
10
Generative adversarial network in medical imaging: A review.
Med Image Anal. 2019 Dec;58:101552. doi: 10.1016/j.media.2019.101552. Epub 2019 Aug 31.

引用本文的文献

1
[Cross modal translation of magnetic resonance imaging and computed tomography images based on diffusion generative adversarial networks].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Jun 25;42(3):575-584. doi: 10.7507/1001-5515.202404056.

本文引用的文献

1
Edge-enhanced dual discriminator generative adversarial network for fast MRI with parallel imaging using multi-view information.
Appl Intell (Dordr). 2022;52(13):14693-14710. doi: 10.1007/s10489-021-03092-w. Epub 2022 Jan 28.
2
GANs for medical image analysis.
Artif Intell Med. 2020 Sep;109:101938. doi: 10.1016/j.artmed.2020.101938. Epub 2020 Aug 9.
3
Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction.
Comput Biol Med. 2021 Jul;134:104504. doi: 10.1016/j.compbiomed.2021.104504. Epub 2021 May 26.
4
Optimizing multicontrast MRI reconstruction with shareable feature aggregation and selection.
NMR Biomed. 2021 Aug;34(8):e4540. doi: 10.1002/nbm.4540. Epub 2021 May 11.
5
Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction.
Philos Trans A Math Phys Eng Sci. 2021 Jun 28;379(2200):20200203. doi: 10.1098/rsta.2020.0203. Epub 2021 May 10.
7
On the regularization of feature fusion and mapping for fast MR multi-contrast imaging via iterative networks.
Magn Reson Imaging. 2021 Apr;77:159-168. doi: 10.1016/j.mri.2020.12.019. Epub 2021 Jan 2.
8
High quality and fast compressed sensing MRI reconstruction via edge-enhanced dual discriminator generative adversarial network.
Magn Reson Imaging. 2021 Apr;77:124-136. doi: 10.1016/j.mri.2020.12.011. Epub 2021 Jan 7.
10
Parallel imaging with a combination of sensitivity encoding and generative adversarial networks.
Quant Imaging Med Surg. 2020 Dec;10(12):2260-2273. doi: 10.21037/qims-20-518.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验