Opt Express. 2023 May 22;31(11):17964-17986. doi: 10.1364/OE.485713.
Laser ablation is nowadays an extensively applied technology to probe the chemical composition of solid materials. It allows for precise targeting of micrometer objects on and in samples, and enables chemical depth profiling with nanometer resolution. An in-depth understanding of the 3D geometry of the ablation craters is crucial for precise calibration of the depth scale in chemical depth profiles. Herein we present a comprehensive study on laser ablation processes using a Gaussian-shaped UV-femtosecond irradiation source and present how the combination of three different imaging methods (scanning electron microscopy, interferometric microscopy, and X-ray computed tomography) can provide accurate information on the crater's shapes. Crater analysis by applying X-ray computed tomography is of considerable interest because it allows the imaging of an array of craters in one step with sub-µm accuracy and is not limited to the aspect ratio of the crater. X-ray computed tomography thereby complements the analysis of laser ablation craters. The study investigates the effect of laser pulse energy and laser burst count on a single crystal Ru(0001) sample. Single crystals ensure that there is no dependence on the grain orientations during the laser ablation process. An array of 156 craters of different dimensions ranging from <20 nm to ∼40 µm in depth were created. For each individually applied laser pulse, we measured the number of ions generated in the ablation plume with our laser ablation ionization mass spectrometer. We show to which extent the combination of these four techniques reveals valuable information on the ablation threshold, the ablation rate, and the limiting ablation depth. The latter is expected to be a consequence of decreasing irradiance upon increasing crater surface area. The ion signal generated was found to be proportional to the volume ablated up to the certain depth, which enables in-situ depth calibration during the measurement.
激光烧蚀是一种广泛应用于探测固体材料化学成分的技术。它可以精确地瞄准样品表面和内部的微米级物体,并实现纳米分辨率的化学深度剖析。深入了解烧蚀坑的三维几何形状对于精确校准化学深度剖析中的深度标尺至关重要。本文全面研究了使用高斯形紫外飞秒激光辐射源的激光烧蚀过程,并介绍了三种不同成像方法(扫描电子显微镜、干涉显微镜和 X 射线计算机断层扫描)的组合如何提供有关坑形状的准确信息。应用 X 射线计算机断层扫描进行坑分析具有重要意义,因为它可以一步以亚微米精度对一系列坑进行成像,并且不受坑纵横比的限制。X 射线计算机断层扫描因此补充了激光烧蚀坑的分析。该研究调查了激光脉冲能量和激光脉冲数对单晶 Ru(0001)样品的影响。单晶确保在激光烧蚀过程中不依赖于晶粒取向。创建了一个由不同尺寸的 156 个坑组成的阵列,深度从 <20nm 到 ∼40 µm 不等。对于每个单独应用的激光脉冲,我们使用激光烧蚀电离质谱仪测量了在烧蚀羽流中产生的离子数量。我们展示了这四种技术的组合在烧蚀阈值、烧蚀率和限制烧蚀深度方面揭示了有价值的信息。后者预计是由于随着坑表面积的增加而辐照度降低的结果。生成的离子信号被发现与烧蚀体积成正比,直到一定深度,这使得在测量过程中能够进行原位深度校准。