Suppr超能文献

量化野生海豚种群的年龄结构:测试无人机航空系统摄影测量法的准确性。

Quantifying the age structure of free-ranging delphinid populations: Testing the accuracy of Unoccupied Aerial System photogrammetry.

作者信息

Vivier Fabien, Wells Randall S, Hill Marie C, Yano Kymberly M, Bradford Amanda L, Leunissen Eva M, Pacini Aude, Booth Cormac G, Rocho-Levine Julie, Currie Jens J, Patton Philip T, Bejder Lars

机构信息

Marine Mammal Research Program Hawai'i Institute of Marine Biology University of Hawai'i at Mānoa Mānoa Hawai'i USA.

Chicago Zoological Society's Sarasota Dolphin Research Program c/o Mote Marine Laboratory Sarasota Florida USA.

出版信息

Ecol Evol. 2023 Jun 26;13(6):e10082. doi: 10.1002/ece3.10082. eCollection 2023 Jun.

Abstract

Understanding the population health status of long-lived and slow-reproducing species is critical for their management. However, it can take decades with traditional monitoring techniques to detect population-level changes in demographic parameters. Early detection of the effects of environmental and anthropogenic stressors on vital rates would aid in forecasting changes in population dynamics and therefore inform management efforts. Changes in vital rates strongly correlate with deviations in population growth, highlighting the need for novel approaches that can provide early warning signs of population decline (e.g., changes in age structure). We tested a novel and frequentist approach, using Unoccupied Aerial System (UAS) photogrammetry, to assess the population age structure of small delphinids. First, we measured the precision and accuracy of UAS photogrammetry in estimating total body length (TL) of trained bottlenose dolphins (). Using a log-transformed linear model, we estimated TL using the blowhole to dorsal fin distance (BHDF) for surfacing animals. To test the performance of UAS photogrammetry to age-classify individuals, we then used length measurements from a 35-year dataset from a free-ranging bottlenose dolphin community to simulate UAS estimates of BHDF and TL. We tested five age classifiers and determined where young individuals (<10 years) were assigned when misclassified. Finally, we tested whether UAS-simulated BHDF only or the associated TL estimates provided better classifications. TL of surfacing dolphins was overestimated by 3.3% ±3.1% based on UAS-estimated BHDF. Our age classifiers performed best in predicting age-class when using broader and fewer (two and three) age-class bins with ~80% and ~72% assignment performance, respectively. Overall, 72.5%-93% of the individuals were correctly classified within 2 years of their actual age-class bin. Similar classification performances were obtained using both proxies. UAS photogrammetry is a non-invasive, inexpensive, and effective method to estimate TL and age-class of free-swimming dolphins. UAS photogrammetry can facilitate the detection of early signs of population changes, which can provide important insights for timely management decisions.

摘要

了解长寿且繁殖缓慢物种的种群健康状况对其管理至关重要。然而,使用传统监测技术可能需要数十年才能检测到种群水平上的人口统计学参数变化。尽早发现环境和人为压力源对生命率的影响,将有助于预测种群动态变化,从而为管理工作提供依据。生命率的变化与种群增长偏差密切相关,这凸显了需要新方法来提供种群数量下降的早期预警信号(例如年龄结构的变化)。我们测试了一种新颖的频率学派方法,利用无人机系统(UAS)摄影测量技术来评估小型海豚的种群年龄结构。首先,我们测量了UAS摄影测量在估计训练有素的宽吻海豚的体长(TL)时的精度和准确性。使用对数变换线性模型,我们通过浮出水面动物的气孔到背鳍的距离(BHDF)来估计TL。为了测试UAS摄影测量对个体进行年龄分类的性能,我们随后使用了来自一个自由放养宽吻海豚群落的35年数据集的长度测量值,来模拟UAS对BHDF和TL的估计。我们测试了五种年龄分类器,并确定了误分类时年轻个体(<10岁)被归为哪个类别。最后,我们测试了仅使用UAS模拟的BHDF还是相关的TL估计能提供更好的分类。基于UAS估计的BHDF,浮出水面海豚的TL被高估了3.3%±3.1%。当使用更宽泛且数量更少(两个和三个)的年龄类别区间时(分别具有约80%和约72%的分类性能),我们的年龄分类器在预测年龄类别方面表现最佳。总体而言,72.5%-93%的个体在其实际年龄类别区间的两年内被正确分类。使用这两种代理获得了相似的分类性能。UAS摄影测量是一种非侵入性、低成本且有效的方法,可用于估计自由游动海豚的TL和年龄类别。UAS摄影测量有助于检测种群变化的早期迹象,可为及时的管理决策提供重要见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验