Suppr超能文献

微环境工程为锂硫电池带来广泛策略。

Microenvironment Engineering Enables Broad Strategies for Lithium-Sulfur Batteries.

作者信息

Li Ranqi, Xiao Yingbo, Huang Shaoming

机构信息

School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.

Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.

出版信息

Adv Sci (Weinh). 2025 Aug;12(32):e05685. doi: 10.1002/advs.202505685. Epub 2025 Jul 11.

Abstract

Lithium-sulfur batteries (LSBs) are regarded as one of the most promising next-generation energy storage technologies due to their high energy density, abundant resource availability, and environmental sustainability. However, significant challenges, such as the lithium polysulfides shuttle effect and sluggish redox kinetics, impede their practical application. Microenvironment engineering provides innovative solutions to these issues by precisely controlling the physical and chemical environments of key components within LSBs. Despite the significance of this approach, there is a lack of systematic reviews on its application in the field of LSBs. This review fills the gap by comprehensively summarizing the research progress in microenvironment engineering for LSBs, focusing on four key aspects: 1) structural microenvironment engineering; 2) lithiophilicity microenvironment engineering; 3) sulfiphilicity microenvironment engineering; and 4) lithiophilicity-sulfiphilicity microenvironment engineering. These strategies are analyzed for their role in mitigating the challenges associated with LSBs. Finally, the research directions and the ongoing potential of the microenvironment engineering to drive further progress in this field are proposed for inspiring innovation and accelerating the practical application of LSBs in future.

摘要

锂硫电池(LSBs)因其高能量密度、丰富的资源可用性和环境可持续性,被视为最有前途的下一代储能技术之一。然而,诸如多硫化锂穿梭效应和缓慢的氧化还原动力学等重大挑战阻碍了它们的实际应用。微环境工程通过精确控制锂硫电池关键组件的物理和化学环境,为这些问题提供了创新解决方案。尽管这种方法很重要,但目前缺乏关于其在锂硫电池领域应用的系统综述。本综述通过全面总结锂硫电池微环境工程的研究进展填补了这一空白,重点关注四个关键方面:1)结构微环境工程;2)亲锂性微环境工程;3)亲硫性微环境工程;4)亲锂 - 亲硫性微环境工程。分析了这些策略在缓解锂硫电池相关挑战中的作用。最后,提出了微环境工程的研究方向及其推动该领域进一步发展的潜力,以激发创新并加速锂硫电池在未来的实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验