Suppr超能文献

用于先进锂硫电池的碳氮基材料

Carbon-Nitride-Based Materials for Advanced Lithium-Sulfur Batteries.

作者信息

Sun Wenhao, Song Zihao, Feng Zhenxing, Huang Yaqin, Xu Zhichuan J, Lu Yi-Chun, Zou Qingli

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.

School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA.

出版信息

Nanomicro Lett. 2022 Nov 14;14(1):222. doi: 10.1007/s40820-022-00954-x.

Abstract

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage systems owing to their high energy density and low cost. However, critical challenges including severe shuttling of lithium polysulfides (LiPSs) and sluggish redox kinetics limit the practical application of Li-S batteries. Carbon nitrides (CN), represented by graphitic carbon nitride (g-CN), provide new opportunities for overcoming these challenges. With a graphene-like structure and high pyridinic-N content, g-CN can effectively immobilize LiPSs and enhance the redox kinetics of S species. In addition, its structure and properties including electronic conductivity and catalytic activity can be regulated by simple methods that facilitate its application in Li-S batteries. Here, the recent progress of applying CN-based materials including the optimized g-CN, g-CN-based composites, and other novel CN materials is systematically reviewed in Li-S batteries, with a focus on the structure-activity relationship. The limitations of existing CN-based materials are identified, and the perspectives on the rational design of advanced CN-based materials are provided for high-performance Li-S batteries.

摘要

锂硫(Li-S)电池因其高能量密度和低成本,是下一代储能系统的理想候选者。然而,包括多硫化锂(LiPSs)严重穿梭和氧化还原动力学迟缓在内的关键挑战限制了Li-S电池的实际应用。以石墨相氮化碳(g-CN)为代表的碳氮化物(CN)为克服这些挑战提供了新机遇。g-CN具有类石墨烯结构和高吡啶氮含量,能有效固定LiPSs并增强硫物种的氧化还原动力学。此外,其结构和性能,包括电子导电性和催化活性,可通过简单方法进行调控,便于其在Li-S电池中的应用。在此,系统综述了包括优化的g-CN、g-CN基复合材料及其他新型CN材料在内的CN基材料在Li-S电池中的最新进展,重点关注结构-活性关系。明确了现有CN基材料的局限性,并为高性能Li-S电池提供了先进CN基材料合理设计的展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea44/9663784/2b53af2fa2e7/40820_2022_954_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验