Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.
Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.
Clin Chem Lab Med. 2023 Jul 3;61(12):2216-2228. doi: 10.1515/cclm-2023-0291. Print 2023 Nov 27.
Non-small cell lung cancer (NSCLC) accounts for more than 80 % of all lung cancers, and its 5-year survival rate can be greatly improved by early diagnosis. However, early diagnosis remains elusive because of the lack of effective biomarkers. In this study, we aimed to develop an effective diagnostic model for NSCLC based on a combination of circulating biomarkers.
Tissue-deregulated long noncoding RNAs (lncRNAs) in NSCLC were identified in datasets retrieved from the Gene Expression Omnibus (GEO, n=727) and The Cancer Genome Atlas (TCGA, n=1,135) databases, and their differential expression was verified in paired local plasma and exosome samples from NSCLC patients. Subsequently, LASSO regression was used to screen for biomarkers in a large clinical population, and a logistic regression model was used to establish a multi-marker diagnostic model. The area under the receiver operating characteristic (ROC) curve (AUC), calibration plots, decision curve analysis (DCA), clinical impact curves, and integrated discrimination improvement (IDI) were used to evaluate the efficiency of the diagnostic model.
Three lncRNAs-PGM5-AS1, SFTA1P, and CTA-384D8.35 were consistently expressed in online tissue datasets, plasma, and exosomes from local patients. LASSO regression identified nine variables (Plasma CTA-384D8.35, Plasma PGM5-AS1, Exosome CTA-384D8.35, Exosome PGM5-AS1, Exosome SFTA1P, Log10CEA, Log10CA125, SCC, and NSE) in clinical samples that were eventually included in the multi-marker diagnostic model. Logistic regression analysis revealed that Plasma CTA-384D8.35, exosome SFTA1P, Log10CEA, Exosome CTA-384D8.35, SCC, and NSE were independent risk factors for NSCLC (p<0.01), and their results were visualized using a nomogram to obtain personalized prediction outcomes. The constructed diagnostic model demonstrated good NSCLC prediction ability in both the training and validation sets (AUC=0.97).
In summary, the constructed circulating lncRNA-based diagnostic model has good NSCLC prediction ability in clinical samples and provides a potential diagnostic tool for NSCLC.
非小细胞肺癌(NSCLC)占所有肺癌的 80%以上,通过早期诊断可以大大提高其 5 年生存率。然而,由于缺乏有效的生物标志物,早期诊断仍然难以实现。在本研究中,我们旨在基于循环生物标志物的组合开发一种有效的 NSCLC 诊断模型。
从基因表达综合数据库(GEO,n=727)和癌症基因组图谱(TCGA,n=1135)数据库中鉴定 NSCLC 组织调控的长链非编码 RNA(lncRNA),并在 NSCLC 患者的配对局部血浆和外泌体样本中验证其差异表达。随后,使用 LASSO 回归在大临床人群中筛选生物标志物,并使用逻辑回归模型建立多标志物诊断模型。使用受试者工作特征(ROC)曲线下面积(AUC)、校准图、决策曲线分析(DCA)、临床影响曲线和综合判别改善(IDI)来评估诊断模型的效率。
三个 lncRNA-PGM5-AS1、SFTA1P 和 CTA-384D8.35 在在线组织数据集、局部患者的血浆和外泌体中均一致表达。LASSO 回归在临床样本中确定了九个变量(血浆 CTA-384D8.35、血浆 PGM5-AS1、外泌体 CTA-384D8.35、外泌体 PGM5-AS1、外泌体 SFTA1P、Log10CEA、Log10CA125、SCC 和 NSE),最终纳入多标志物诊断模型。逻辑回归分析显示,血浆 CTA-384D8.35、外泌体 SFTA1P、Log10CEA、外泌体 CTA-384D8.35、SCC 和 NSE 是 NSCLC 的独立危险因素(p<0.01),并通过列线图可视化其结果,以获得个性化的预测结果。所构建的诊断模型在训练集和验证集中均具有良好的 NSCLC 预测能力(AUC=0.97)。
综上所述,构建的基于循环 lncRNA 的诊断模型在临床样本中具有良好的 NSCLC 预测能力,为 NSCLC 提供了一种潜在的诊断工具。