Suppr超能文献

基于磁共振成像(MRI)的椎间盘形态和单轴变形的自动分割与预测

Automated segmentation and prediction of intervertebral disc morphology and uniaxial deformations from MRI.

作者信息

Coppock James A, Zimmer Nicole E, Spritzer Charles E, Goode Adam P, DeFrate Louis E

机构信息

Department of Orthopedic Surgery, Duke University School of Medicine, United States.

Department of Biomedical Engineering, Duke University, United States.

出版信息

Osteoarthr Cartil Open. 2023 Jun 10;5(3):100378. doi: 10.1016/j.ocarto.2023.100378. eCollection 2023 Sep.

Abstract

OBJECTIVE

The measurement of intervertebral disc (IVD) mechanics may be used to understand the etiology of IVD degeneration and low back pain (LBP). To this end, our lab has developed methods to measure IVD morphology and uniaxial compressive deformation (% change in IVD height) resulting from dynamic activity, , using magnetic resonance images (MRI). However, due to the time-intensive nature of manual image segmentation, we sought to validate an image segmentation algorithm that could accurately and reliably reproduce models of tissue mechanics.

DESIGN

Therefore, we developed and evaluated two commonly employed deep learning architectures (2D and 3D U-Net) for the segmentation of IVDs from MRI. The performance of these models was evaluated for morphological accuracy by comparing predicted IVD segmentations (Dice similarity coefficient, mDSC; average surface distance, ASD) to manual (ground truth) measures. Likewise, functional reliability and precision were assessed by evaluating the intraclass correlation coefficient (ICC) and standard error of measurement (SE) of predicted and manually derived deformation measures.

RESULTS

Peak model performance was obtained using the 3D U-net architecture, yielding a maximum mDSC ​= ​0.9824 and component-wise ASD ​= ​0.0683 ​mm; ASD ​= ​0.0335 ​mm; ASD ​= ​0.0329 ​mm. Functional model performance demonstrated excellent reliability ICC ​= ​0.926 and precision SE ​= ​0.42%.

CONCLUSIONS

This study demonstrated that a deep learning framework can precisely and reliably automate measures of IVD function, drastically improving the throughput of these time-intensive methods.

摘要

目的

测量椎间盘(IVD)力学特性有助于理解椎间盘退变和腰痛(LBP)的病因。为此,我们实验室已开发出利用磁共振成像(MRI)测量IVD形态以及动态活动导致的单轴压缩变形(IVD高度变化百分比)的方法。然而,由于手动图像分割耗时较长,我们试图验证一种能够准确可靠地重现组织力学模型的图像分割算法。

设计

因此,我们开发并评估了两种常用的深度学习架构(2D和3D U-Net),用于从MRI中分割IVD。通过将预测的IVD分割结果(骰子相似系数,mDSC;平均表面距离,ASD)与手动(真实)测量结果进行比较,评估这些模型在形态学准确性方面的性能。同样,通过评估预测变形测量值和手动得出的变形测量值的组内相关系数(ICC)和测量标准误差(SE),来评估功能可靠性和精度。

结果

使用3D U-net架构获得了最佳模型性能,最大mDSC = 0.9824,各组件的ASD = 0.0683毫米;ASD = 0.0335毫米;ASD = 0.0329毫米。功能模型性能显示出出色的可靠性,ICC = 0.926,精度SE = 0.42%。

结论

本研究表明,深度学习框架可以精确可靠地自动执行IVD功能测量,极大地提高了这些耗时方法的通量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecbc/10302207/287173b6dd45/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验