IEEE Trans Biomed Circuits Syst. 2023 Oct;17(5):1153-1165. doi: 10.1109/TBCAS.2023.3291021. Epub 2023 Nov 21.
The memristor has been extensively used to facilitate the synaptic online learning of brain-inspired spiking neural networks (SNNs). However, the current memristor-based work can not support the widely used yet sophisticated trace-based learning rules, including the trace-based Spike-Timing-Dependent Plasticity (STDP) and the Bayesian Confidence Propagation Neural Network (BCPNN) learning rules. This paper proposes a learning engine to implement trace-based online learning, consisting of memristor-based blocks and analog computing blocks. The memristor is used to mimic the synaptic trace dynamics by exploiting the nonlinear physical property of the device. The analog computing blocks are used for the addition, multiplication, logarithmic and integral operations. By organizing these building blocks, a reconfigurable learning engine is architected and realized to simulate the STDP and BCPNN online learning rules, using memristors and 180 nm analog CMOS technology. The results show that the proposed learning engine can achieve energy consumption of 10.61 pJ and 51.49 pJ per synaptic update for the STDP and BCPNN learning rules, respectively, with a 147.03× and 93.61× reduction compared to the 180 nm ASIC counterparts, and also a 9.39× and 5.63× reduction compared to the 40 nm ASIC counterparts. Compared with the state-of-the-art work of Loihi and eBrainII, the learning engine can reduce the energy per synaptic update by 11.31× and 13.13× for trace-based STDP and BCPNN learning rules, respectively.
忆阻器被广泛用于促进类脑脉冲神经网络 (SNN) 的突触在线学习。然而,当前基于忆阻器的工作无法支持广泛使用的、复杂的基于轨迹的学习规则,包括基于轨迹的尖峰时间依赖可塑性 (STDP) 和贝叶斯置信传播神经网络 (BCPNN) 学习规则。本文提出了一种学习引擎来实现基于轨迹的在线学习,它由基于忆阻器的模块和模拟计算模块组成。忆阻器通过利用器件的非线性物理特性来模拟突触轨迹动力学。模拟计算模块用于进行加法、乘法、对数和积分运算。通过组织这些构建块,设计并实现了一个可重构的学习引擎,以模拟 STDP 和 BCPNN 在线学习规则,使用忆阻器和 180nm 模拟 CMOS 技术。结果表明,所提出的学习引擎可以分别为 STDP 和 BCPNN 学习规则实现 10.61pJ 和 51.49pJ 的突触更新能量消耗,与 180nm ASIC 相比分别减少了 147.03×和 93.61×,与 40nm ASIC 相比分别减少了 9.39×和 5.63×。与 Loihi 和 eBrainII 的最新工作相比,学习引擎可以分别将基于轨迹的 STDP 和 BCPNN 学习规则的每突触更新能量消耗减少 11.31×和 13.13×。