Suppr超能文献

一种支持多种学习规则的混合互补金属氧化物半导体-忆阻器脉冲神经网络。

A Hybrid CMOS-Memristor Spiking Neural Network Supporting Multiple Learning Rules.

作者信息

Florini Davide, Gandolfi Daniela, Mapelli Jonathan, Benatti Lorenzo, Pavan Paolo, Puglisi Francesco Maria

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):5117-5129. doi: 10.1109/TNNLS.2022.3202501. Epub 2024 Apr 4.

Abstract

Artificial intelligence (AI) is changing the way computing is performed to cope with real-world, ill-defined tasks for which traditional algorithms fail. AI requires significant memory access, thus running into the von Neumann bottleneck when implemented in standard computing platforms. In this respect, low-latency energy-efficient in-memory computing can be achieved by exploiting emerging memristive devices, given their ability to emulate synaptic plasticity, which provides a path to design large-scale brain-inspired spiking neural networks (SNNs). Several plasticity rules have been described in the brain and their coexistence in the same network largely expands the computational capabilities of a given circuit. In this work, starting from the electrical characterization and modeling of the memristor device, we propose a neuro-synaptic architecture that co-integrates in a unique platform with a single type of synaptic device to implement two distinct learning rules, namely, the spike-timing-dependent plasticity (STDP) and the Bienenstock-Cooper-Munro (BCM). This architecture, by exploiting the aforementioned learning rules, successfully addressed two different tasks of unsupervised learning.

摘要

人工智能(AI)正在改变计算的执行方式,以应对传统算法无法处理的现实世界中定义不明确的任务。人工智能需要大量的内存访问,因此在标准计算平台上实现时会遇到冯·诺依曼瓶颈。在这方面,利用新兴的忆阻器设备可以实现低延迟、高能效的内存计算,因为它们能够模拟突触可塑性,这为设计大规模受大脑启发的脉冲神经网络(SNN)提供了一条途径。大脑中已经描述了几种可塑性规则,它们在同一网络中的共存极大地扩展了给定电路的计算能力。在这项工作中,我们从忆阻器器件的电学特性和建模出发,提出了一种神经突触架构,该架构在一个独特的平台上与单一类型的突触器件共同集成,以实现两种不同的学习规则,即脉冲时间依赖可塑性(STDP)和比恩斯托克 - 库珀 - 蒙罗(BCM)规则。通过利用上述学习规则,该架构成功解决了无监督学习的两个不同任务。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验