电子健康记录数据质量评估及工具:系统综述。

Electronic health record data quality assessment and tools: a systematic review.

机构信息

Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, Missouri, USA.

Institute for Informatics, Data Science and Biostatistics, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

J Am Med Inform Assoc. 2023 Sep 25;30(10):1730-1740. doi: 10.1093/jamia/ocad120.

Abstract

OBJECTIVE

We extended a 2013 literature review on electronic health record (EHR) data quality assessment approaches and tools to determine recent improvements or changes in EHR data quality assessment methodologies.

MATERIALS AND METHODS

We completed a systematic review of PubMed articles from 2013 to April 2023 that discussed the quality assessment of EHR data. We screened and reviewed papers for the dimensions and methods defined in the original 2013 manuscript. We categorized papers as data quality outcomes of interest, tools, or opinion pieces. We abstracted and defined additional themes and methods though an iterative review process.

RESULTS

We included 103 papers in the review, of which 73 were data quality outcomes of interest papers, 22 were tools, and 8 were opinion pieces. The most common dimension of data quality assessed was completeness, followed by correctness, concordance, plausibility, and currency. We abstracted conformance and bias as 2 additional dimensions of data quality and structural agreement as an additional methodology.

DISCUSSION

There has been an increase in EHR data quality assessment publications since the original 2013 review. Consistent dimensions of EHR data quality continue to be assessed across applications. Despite consistent patterns of assessment, there still does not exist a standard approach for assessing EHR data quality.

CONCLUSION

Guidelines are needed for EHR data quality assessment to improve the efficiency, transparency, comparability, and interoperability of data quality assessment. These guidelines must be both scalable and flexible. Automation could be helpful in generalizing this process.

摘要

目的

我们扩展了 2013 年关于电子健康记录 (EHR) 数据质量评估方法和工具的文献综述,以确定 EHR 数据质量评估方法的最新改进或变化。

材料与方法

我们对 2013 年至 2023 年 4 月期间在 PubMed 上发表的讨论 EHR 数据质量评估的文章进行了系统回顾。我们筛选并审查了论文,以确定原始 2013 年手稿中定义的维度和方法。我们将论文分为数据质量感兴趣的结果、工具或观点文章。我们通过迭代审查过程提取和定义了其他主题和方法。

结果

我们在综述中纳入了 103 篇论文,其中 73 篇是数据质量感兴趣的结果论文,22 篇是工具,8 篇是观点文章。评估的数据质量最常见的维度是完整性,其次是正确性、一致性、合理性和时效性。我们将一致性和偏差抽象为数据质量的另外两个维度,并将结构一致性作为另外一种方法。

讨论

自原始 2013 年综述以来,EHR 数据质量评估出版物有所增加。在应用中仍然持续评估 EHR 数据质量的一致维度。尽管评估模式一致,但仍没有标准的 EHR 数据质量评估方法。

结论

需要制定 EHR 数据质量评估指南,以提高数据质量评估的效率、透明度、可比性和互操作性。这些指南必须既具有可扩展性又具有灵活性。自动化可能有助于推广这一过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f261/10531113/efeec2a842f8/ocad120f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索