Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medcine - Basic Sciences, Nashville, Tennessee, USA.
Chemical and Physical Biology Program, Vanderbilt University School of Medicine - Basic Sciences, Nashville, Tennessee, USA.
J Neurochem. 2023 Oct;167(1):16-37. doi: 10.1111/jnc.15880. Epub 2023 Jun 30.
Clustering of L-type voltage-gated Ca channels (LTCCs) in the plasma membrane is increasingly implicated in creating highly localized Ca signaling nanodomains. For example, neuronal LTCC activation can increase phosphorylation of the nuclear CREB transcription factor by increasing Ca concentrations within a nanodomain close to the channel, without requiring bulk Ca increases in the cytosol or nucleus. However, the molecular basis for LTCC clustering is poorly understood. The postsynaptic scaffolding protein Shank3 specifically associates with one of the major neuronal LTCCs, the Ca 1.3 calcium channel, and is required for optimal LTCC-dependent excitation-transcription coupling. Here, we co-expressed Ca 1.3 α1 subunits with two distinct epitope-tags with or without Shank3 in HEK cells. Co-immunoprecipitation studies using the cell lysates revealed that Shank3 can assemble complexes containing multiple Ca 1.3 α1 subunits under basal conditions. Moreover, Ca 1.3 LTCC complex formation was facilitated by Ca β subunits (β3 and β2a), which also interact with Shank3. Shank3 interactions with Ca 1.3 LTCCs and multimeric Ca 1.3 LTCC complex assembly were disrupted following the addition of Ca to cell lysates, perhaps simulating conditions within an activated Ca 1.3 LTCC nanodomain. In intact HEK293T cells, co-expression of Shank3 enhanced the intensity of membrane-localized Ca 1.3 LTCC clusters under basal conditions, but not after Ca channel activation. Live cell imaging studies also revealed that Ca influx through LTCCs disassociated Shank3 from Ca 1.3 LTCCs clusters and reduced the Ca 1.3 cluster intensity. Deletion of the Shank3 PDZ domain prevented both binding to Ca 1.3 and the changes in multimeric Ca 1.3 LTCC complex assembly in vitro and in HEK293 cells. Finally, we found that shRNA knock-down of Shank3 expression in cultured rat primary hippocampal neurons reduced the intensity of surface-localized Ca 1.3 LTCC clusters in dendrites. Taken together, our findings reveal a novel molecular mechanism contributing to neuronal LTCC clustering under basal conditions.
L 型电压门控钙通道(LTCCs)在质膜中的聚集越来越多地与创建高度局部化的 Ca 信号纳米域有关。例如,神经元 LTCC 的激活可以通过增加靠近通道的纳米域内的 Ca 浓度来增加核 CREB 转录因子的磷酸化,而不需要细胞质或核内的 Ca 大量增加。然而,LTCC 聚集的分子基础知之甚少。突触后支架蛋白 Shank3 特异性与主要的神经元 LTCC 之一,即 Ca1.3 钙通道结合,并需要最佳的 LTCC 依赖性兴奋转录偶联。在这里,我们在 HEK 细胞中共表达 Ca1.3α1 亚基与两个不同的表位标签,有无 Shank3。使用细胞裂解物进行的共免疫沉淀研究表明,Shank3 可以在基础条件下组装包含多个 Ca1.3α1 亚基的复合物。此外,Caβ 亚基(β3 和 β2a)促进 Ca1.3 LTCC 复合物的形成,它们也与 Shank3 相互作用。Shank3 与 Ca1.3 LTCC 相互作用以及多聚体 Ca1.3 LTCC 复合物的组装在细胞裂解物中添加 Ca 后被破坏,这可能模拟了激活的 Ca1.3 LTCC 纳米域内的条件。在完整的 HEK293T 细胞中,Shank3 的共表达增强了基础条件下膜定位的 Ca1.3 LTCC 簇的强度,但在 Ca 通道激活后则没有。活细胞成像研究还表明,通过 LTCC 的 Ca 内流使 Shank3 从 Ca1.3 LTCC 簇解离,并降低 Ca1.3 簇的强度。Shank3 PDZ 结构域的缺失阻止了它与 Ca1.3 的结合,并改变了体外和 HEK293 细胞中多聚体 Ca1.3 LTCC 复合物的组装。最后,我们发现培养的大鼠海马神经元中的 Shank3 表达的 shRNA 敲低降低了树突中表面定位的 Ca1.3 LTCC 簇的强度。总之,我们的发现揭示了一种新的分子机制,有助于基础条件下神经元 LTCC 的聚集。