Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
Nat Commun. 2024 Aug 5;15(1):6649. doi: 10.1038/s41467-024-51023-3.
Vasodilation in response to low oxygen (O) tension (hypoxic vasodilation) is an essential homeostatic response of systemic arteries that facilitates O supply to tissues according to demand. However, how blood vessels react to O deficiency is not well understood. A common belief is that arterial myocytes are O-sensitive. Supporting this concept, it has been shown that the activity of myocyte L-type Cachannels, the main ion channels responsible for vascular contractility, is reversibly inhibited by hypoxia, although the underlying molecular mechanisms have remained elusive. Here, we show that genetic or pharmacological disruption of mitochondrial electron transport selectively abolishes O modulation of Ca channels and hypoxic vasodilation. Mitochondria function as O sensors and effectors that signal myocyte Ca channels due to constitutive Hif1α-mediated expression of specific electron transport subunit isoforms. These findings reveal the acute O-sensing mechanisms of vascular cells and may guide new developments in vascular pharmacology.
低氧(O)张力(缺氧性血管舒张)引起的血管舒张是全身动脉的基本稳态反应,根据需求促进 O 供应到组织。然而,血管对 O 缺乏的反应尚不清楚。一个普遍的观点是动脉肌细胞对 O 敏感。支持这一概念,已经表明肌细胞 L 型钙通道的活性,负责血管收缩的主要离子通道,可被缺氧可逆抑制,尽管潜在的分子机制仍然难以捉摸。在这里,我们表明,线粒体电子传递的遗传或药理学破坏选择性地消除了 O 对 Ca 通道和缺氧性血管舒张的调节。线粒体作为 O 传感器和效应器,由于组成型 Hif1α 介导的特定电子传递亚基同工型的表达,信号传递肌细胞 Ca 通道。这些发现揭示了血管细胞的急性 O 感应机制,并可能为血管药理学的新发展提供指导。
Front Physiol. 2023-3-3
Cardiovasc Res. 2002-1
Am J Physiol Cell Physiol. 2014-11-5
Eur J Med Res. 2018-8-25
Photoacoustics. 2025-7-5
J Neurochem. 2023-10
Front Physiol. 2023-3-3
Nat Commun. 2022-10-27
Proc Natl Acad Sci U S A. 2022-9-27
Cardiovasc Res. 2021-4-23