Suppr超能文献

心脏脂质代谢、线粒体功能与心力衰竭。

Cardiac lipid metabolism, mitochondrial function, and heart failure.

机构信息

Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy.

Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA.

出版信息

Cardiovasc Res. 2023 Aug 19;119(10):1905-1914. doi: 10.1093/cvr/cvad100.

Abstract

A fine balance between uptake, storage, and the use of high energy fuels, like lipids, is crucial in the homeostasis of different metabolic tissues. Nowhere is this balance more important and more precarious than in the heart. This highly energy-demanding muscle normally oxidizes almost all the available substrates to generate energy, with fatty acids being the preferred source under physiological conditions. In patients with cardiomyopathies and heart failure, changes in the main energetic substrate are observed; these hearts often prefer to utilize glucose rather than oxidizing fatty acids. An imbalance between uptake and oxidation of fatty acid can result in cellular lipid accumulation and cytotoxicity. In this review, we will focus on the sources and uptake pathways used to direct fatty acids to cardiomyocytes. We will then discuss the intracellular machinery used to either store or oxidize these lipids and explain how disruptions in homeostasis can lead to mitochondrial dysfunction and heart failure. Moreover, we will also discuss the role of cholesterol accumulation in cardiomyocytes. Our discussion will attempt to weave in vitro experiments and in vivo data from mice and humans and use several human diseases to illustrate metabolism gone haywire as a cause of or accomplice to cardiac dysfunction.

摘要

在不同代谢组织的动态平衡中,吸收、储存和利用高能燃料(如脂质)之间的平衡至关重要。这种平衡在心脏中尤为重要和脆弱。作为一个高耗能的肌肉,心脏通常会氧化几乎所有可用的底物来产生能量,在生理条件下,脂肪酸是首选的能量来源。在心肌病和心力衰竭患者中,观察到主要能量底物发生变化;这些心脏通常更愿意利用葡萄糖而不是氧化脂肪酸。脂肪酸的摄取和氧化之间的不平衡会导致细胞内脂质积累和细胞毒性。在这篇综述中,我们将重点关注用于将脂肪酸引导至心肌细胞的来源和摄取途径。然后,我们将讨论用于储存或氧化这些脂质的细胞内机制,并解释动态平衡的破坏如何导致线粒体功能障碍和心力衰竭。此外,我们还将讨论胆固醇在心肌细胞中的积累作用。我们的讨论将尝试整合来自小鼠和人类的体外实验和体内数据,并利用几种人类疾病来说明代谢紊乱作为心脏功能障碍的原因或帮凶。

相似文献

1
Cardiac lipid metabolism, mitochondrial function, and heart failure.
Cardiovasc Res. 2023 Aug 19;119(10):1905-1914. doi: 10.1093/cvr/cvad100.
2
Novel role of the ER/SR Ca sensor STIM1 in the regulation of cardiac metabolism.
Am J Physiol Heart Circ Physiol. 2019 May 1;316(5):H1014-H1026. doi: 10.1152/ajpheart.00544.2018. Epub 2018 Dec 21.
4
Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets.
Curr Pharm Des. 2015;21(25):3654-64. doi: 10.2174/1381612821666150710150445.
6
Re-balancing cellular energy substrate metabolism to mend the failing heart.
Biochim Biophys Acta Mol Basis Dis. 2020 May 1;1866(5):165579. doi: 10.1016/j.bbadis.2019.165579. Epub 2019 Oct 31.
7
Cardiac Energy Metabolism in Heart Failure.
Circ Res. 2021 May 14;128(10):1487-1513. doi: 10.1161/CIRCRESAHA.121.318241. Epub 2021 May 13.
8
Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart.
Biochim Biophys Acta. 2011 Jul;1813(7):1333-50. doi: 10.1016/j.bbamcr.2011.01.015. Epub 2011 Jan 20.
9
Rescue of heart lipoprotein lipase-knockout mice confirms a role for triglyceride in optimal heart metabolism and function.
Am J Physiol Endocrinol Metab. 2013 Dec 1;305(11):E1339-47. doi: 10.1152/ajpendo.00349.2013. Epub 2013 Oct 1.
10
Genetic modification of the heart: transgenic modification of cardiac lipid and carbohydrate utilization.
J Mol Cell Cardiol. 2005 Oct;39(4):581-93. doi: 10.1016/j.yjmcc.2005.07.005.

引用本文的文献

1
Lipid overload meets S-palmitoylation: a metabolic signalling nexus driving cardiovascular and heart disease.
Cell Commun Signal. 2025 Sep 2;23(1):392. doi: 10.1186/s12964-025-02398-3.
3
Nobiletin protected against hypertrophic cardiomyopathy via targeting PPARα.
Front Pharmacol. 2025 Aug 4;16:1628625. doi: 10.3389/fphar.2025.1628625. eCollection 2025.
5
Sarcoplasmic reticulum-mitochondria microdomains: hugging and kissing in the heart.
Am J Physiol Cell Physiol. 2025 Aug 1;329(2):C599-C610. doi: 10.1152/ajpcell.00435.2025. Epub 2025 Jul 11.
7
GPLD1 Attenuates Heart Failure via Dual-Membrane Localization to Inhibit uPAR.
Circ Res. 2025 Aug 15;137(5):e124-e143. doi: 10.1161/CIRCRESAHA.124.325623. Epub 2025 Jul 9.
10
Ultrastructure analysis of mitochondria, lipid droplet and sarcoplasmic reticulum apposition in human heart failure.
J Mol Cell Cardiol Plus. 2025 Jun 10;13:100461. doi: 10.1016/j.jmccpl.2025.100461. eCollection 2025 Sep.

本文引用的文献

1
Flow-Induced Secretion of Endothelial Heparanase Regulates Cardiac Lipoprotein Lipase and Changes Following Diabetes.
J Am Heart Assoc. 2022 Dec 6;11(23):e027958. doi: 10.1161/JAHA.122.027958. Epub 2022 Nov 23.
2
Blocking Lipid Uptake Pathways Does not Prevent Toxicity in Adipose Triglyceride Lipase (ATGL) Deficiency.
J Lipid Res. 2022 Nov;63(11):100274. doi: 10.1016/j.jlr.2022.100274. Epub 2022 Sep 15.
3
Plin5 Bidirectionally Regulates Lipid Metabolism in Oxidative Tissues.
Oxid Med Cell Longev. 2022 Mar 31;2022:4594956. doi: 10.1155/2022/4594956. eCollection 2022.
4
Targeting the vasculature in cardiometabolic disease.
J Clin Invest. 2022 Mar 15;132(6). doi: 10.1172/JCI148556.
7
Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart.
Biomolecules. 2021 Jul 12;11(7):1016. doi: 10.3390/biom11071016.
8
PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction.
Eur Heart J. 2021 Aug 21;42(32):3078-3090. doi: 10.1093/eurheartj/ehab431.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验