Pharmaceutical Biotechnology, Center for Nanoscience, LMU Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
Department of Pharmaceutical Sciences, University of Vienna, UZA II, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
J Am Chem Soc. 2023 Jul 19;145(28):15171-15179. doi: 10.1021/jacs.3c01902. Epub 2023 Jul 3.
The introduction of the CRISPR/Cas9 system in the form of Cas9/sgRNA ribonucleoproteins (RNP) is an efficient, straightforward strategy for genome editing, and potent RNP carriers are in high demand. Here, we report a series of artificial peptides based on novel ionizable amino acids that are able to deliver Cas9 RNP into cells very efficiently. Systematic variation of hydrophobic properties revealed a relationship between the xenopeptide logD and genome editing potency. By correlating the physicochemical properties with biological activity, individual optima were found for different xenopeptide sequence architectures. The optimized amphiphilic carriers enable ∼88% eGFP knockout at an RNP dose of only 1 nM and up to 40% homology-directed repair (HDR) in eGFP/BFP switchable reporter cells by co-delivery with an ssDNA template. Mechanistic studies demonstrated that hydrophobically balanced xenopeptides are more resistant to ionic stress as well as concentration-dependent dissociation and promote endocytosis by both clathrin- and macropinocytosis-mediated pathways. The systematic study develops a versatile and adjustable carrier platform and highlights impactful structure-activity relationships, providing a new chemical guide for the design and optimization of nonviral Cas9 RNP nanocarriers.
CRISPR/Cas9 系统以 Cas9/sgRNA 核糖核蛋白(RNP)的形式被引入,是一种高效、直接的基因组编辑策略,因此对高效的 RNP 载体有很高的需求。在这里,我们报告了一系列基于新型可离子化氨基酸的人工肽,这些肽能够非常有效地将 Cas9 RNP 递送到细胞中。对疏水性性质的系统变化研究揭示了 xenopeptide logD 与基因组编辑效力之间的关系。通过将物理化学性质与生物活性相关联,我们发现了不同 xenopeptide 序列结构的个别最佳值。优化后的两亲载体能够在仅 1 nM 的 RNP 剂量下实现约 88%的 eGFP 敲除,并且通过与 ssDNA 模板共递送,在 eGFP/BFP 可切换报告细胞中实现高达 40%的同源定向修复(HDR)。机制研究表明,疏水性平衡的 xenopeptides 对离子胁迫以及浓度依赖性解离更具抗性,并通过网格蛋白和大胞饮介导的途径促进内吞作用。这项系统研究开发了一种通用且可调节的载体平台,并强调了有影响力的结构-活性关系,为非病毒 Cas9 RNP 纳米载体的设计和优化提供了新的化学指导。