Suppr超能文献

事件相关电位研究的最优滤波器II:七种常见事件相关电位成分的推荐设置

Optimal Filters for ERP Research II: Recommended Settings for Seven Common ERP Components.

作者信息

Zhang Guanghui, Garrett David R, Luck Steven J

机构信息

Center for Mind and Brain, University of California-Davis, Davis, California, 95618, USA.

出版信息

bioRxiv. 2023 Jun 14:2023.06.13.544794. doi: 10.1101/2023.06.13.544794.

Abstract

In research with event-related potentials (ERPs), aggressive filters can substantially improve the signal-to-noise ratio and maximize statistical power, but they can also produce significant waveform distortion. Although this tradeoff has been well documented, the field lacks recommendations for filter cutoffs that quantitatively address both of these competing considerations. To fill this gap, we quantified the effects of a broad range of low-pass filter and high-pass filter cutoffs for seven common ERP components (P3b, N400, N170, N2pc, mismatch negativity, error-related negativity, and lateralized readiness potential) recorded from a set of neurotypical young adults. We also examined four common scoring methods (mean amplitude, peak amplitude, peak latency, and 50% area latency). For each combination of component and scoring method, we quantified the effects of filtering on data quality (noise level and signal-to-noise ratio) and waveform distortion. This led to recommendations for optimal low-pass and high-pass filter cutoffs. We repeated the analyses after adding artificial noise to provide recommendations for datasets with moderately greater noise levels. For researchers who are analyzing data with similar ERP components, noise levels, and participant populations, using the recommended filter settings should lead to improved data quality and statistical power without creating problematic waveform distortion.

摘要

在与事件相关电位(ERP)相关的研究中,激进的滤波器可以显著提高信噪比并最大化统计功效,但它们也会产生明显的波形失真。尽管这种权衡已被充分记录,但该领域缺乏关于滤波器截止频率的建议,这些建议能定量地兼顾这两个相互矛盾的考量因素。为了填补这一空白,我们对从一组神经典型的年轻成年人中记录的七种常见ERP成分(P3b、N400、N170、N2pc、失配负波、错误相关负波和侧化准备电位)的广泛低通滤波器和高通滤波器截止频率的影响进行了量化。我们还研究了四种常见的评分方法(平均幅度、峰值幅度、峰值潜伏期和50%面积潜伏期)。对于成分和评分方法的每种组合,我们量化了滤波对数据质量(噪声水平和信噪比)和波形失真的影响。这得出了关于最佳低通和高通滤波器截止频率的建议。在添加人工噪声后,我们重复了分析,以针对噪声水平略高的数据集提供建议。对于使用类似ERP成分、噪声水平和参与者群体来分析数据的研究人员而言,使用推荐的滤波器设置应能提高数据质量和统计功效,而不会产生有问题的波形失真。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d5/10312706/437be141fefe/nihpp-2023.06.13.544794v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验