Suppr超能文献

高通滤波伪影对神经时间序列数据的多变量分类的影响。

High-pass filtering artifacts in multivariate classification of neural time series data.

机构信息

Institute for Brain and Behaviour Amsterdam, Vrije Universiteit Amsterdam, the Netherlands; Department of Experimental and Applied Psychology - Cognitive Psychology, Vrije Universiteit Amsterdam, the Netherlands; Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands.

Institute for Brain and Behaviour Amsterdam, Vrije Universiteit Amsterdam, the Netherlands; Department of Experimental and Applied Psychology - Cognitive Psychology, Vrije Universiteit Amsterdam, the Netherlands; Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam 1001 NK, the Netherlands; Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam 1001 NK, the Netherlands.

出版信息

J Neurosci Methods. 2021 Mar 15;352:109080. doi: 10.1016/j.jneumeth.2021.109080. Epub 2021 Jan 27.

Abstract

BACKGROUND

Traditionally, EEG/MEG data are high-pass filtered and baseline-corrected to remove slow drifts. Minor deleterious effects of high-pass filtering in traditional time-series analysis have been well-documented, including temporal displacements. However, its effects on time-resolved multivariate pattern classification analyses (MVPA) are largely unknown.

NEW METHOD

To prevent potential displacement effects, we extend an alternative method of removing slow drift noise - robust detrending - with a procedure in which we mask out all cortical events from each trial. We refer to this method as trial-masked robust detrending.

RESULTS

In both real and simulated EEG data of a working memory experiment, we show that both high-pass filtering and standard robust detrending create artifacts that result in the displacement of multivariate patterns into activity silent periods, particularly apparent in temporal generalization analyses, and especially in combination with baseline correction. We show that trial-masked robust detrending is free from such displacements.

COMPARISON WITH EXISTING METHOD(S): Temporal displacement may emerge even with modest filter cut-off settings such as 0.05 Hz, and even in regular robust detrending. However, trial-masked robust detrending results in artifact-free decoding without displacements. Baseline correction may unwittingly obfuscate spurious decoding effects and displace them to the rest of the trial.

CONCLUSIONS

Decoding analyses benefit from trial-masked robust detrending, without the unwanted side effects introduced by filtering or regular robust detrending. However, for sufficiently clean data sets and sufficiently strong signals, no filtering or detrending at all may work adequately. Implications for other types of data are discussed, followed by a number of recommendations.

摘要

背景

传统上,EEG/MEG 数据经过高通滤波和基线校正,以去除缓慢漂移。传统时间序列分析中高通滤波的一些轻微的有害影响已有详细记录,包括时间位移。然而,它对时分辨的多元模式分类分析(MVPA)的影响在很大程度上是未知的。

新方法

为了防止潜在的位移影响,我们扩展了一种去除缓慢漂移噪声的替代方法——稳健去趋势,其中包括一种从每个试验中掩蔽所有皮质事件的过程。我们将这种方法称为试验掩蔽稳健去趋势。

结果

在工作记忆实验的真实和模拟 EEG 数据中,我们表明高通滤波和标准稳健去趋势都会产生伪影,导致多元模式位移到活动静默期,特别是在时间泛化分析中,尤其是与基线校正结合时。我们表明,试验掩蔽稳健去趋势没有这样的位移。

与现有方法的比较

即使使用 0.05 Hz 等适度的滤波器截止频率,甚至在常规稳健去趋势中,也可能出现时间位移。然而,试验掩蔽稳健去趋势可以在没有位移的情况下进行无伪影解码。基线校正可能会无意中混淆虚假解码效果,并将其转移到试验的其余部分。

结论

解码分析受益于试验掩蔽稳健去趋势,而不会引入滤波或常规稳健去趋势带来的不良副作用。然而,对于足够干净的数据和足够强的信号,根本不需要滤波或去趋势。讨论了对其他类型数据的影响,并提出了一些建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验