Pasani Satwik, Menon Kavya S, Viswanath Shruthi
National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.
bioRxiv. 2024 Mar 10:2023.06.13.544884. doi: 10.1101/2023.06.13.544884.
Desmosomes mediate cell-cell adhesion and are prevalent in tissues under mechanical stress. However, their detailed structural characterization is not available. Here, we characterized the molecular architecture of the desmosomal outer dense plaque (ODP) using Bayesian integrative structural modeling the Integrative Modeling Platform. Starting principally from the structural interpretation of an electron cryo-tomogram, we integrated information from X-ray crystallography, an immuno-electron microscopy study, biochemical assays, predictions of transmembrane and disordered regions, homology modeling, and stereochemistry information. The integrative structure was validated by information from imaging, tomography, and biochemical studies that were not used in modeling. The ODP resembles a densely packed cylinder with a PKP layer and a PG layer; the desmosomal cadherins and PKP span these two layers. Our integrative approach allowed us to localize disordered regions, such as N-PKP and PG-C. We refined previous protein-protein interactions between desmosomal proteins and provided possible structural hypotheses for defective cell-cell adhesion in several diseases by mapping disease-related mutations on the structure. Finally, we point to features of the structure that could confer resilience to mechanical stress. Our model provides a basis for generating experimentally verifiable hypotheses on the structure and function of desmosomal proteins in normal and disease states.
桥粒介导细胞间黏附,在承受机械应力的组织中普遍存在。然而,其详细的结构特征尚不清楚。在此,我们使用贝叶斯整合结构建模(整合建模平台)对桥粒外周致密斑(ODP)的分子结构进行了表征。主要从电子冷冻断层扫描的结构解释出发,我们整合了来自X射线晶体学、免疫电子显微镜研究、生化分析以及跨膜和无序区域预测、同源建模和立体化学信息。通过未用于建模的成像、断层扫描和生化研究信息对整合结构进行了验证。ODP类似于一个紧密堆积的圆柱体,有一个PKP层和一个PG层;桥粒钙黏蛋白和PKP跨越这两层。我们的整合方法使我们能够定位无序区域,如N-PKP和PG-C。我们细化了先前桥粒蛋白之间的蛋白质-蛋白质相互作用,并通过在结构上定位疾病相关突变,为几种疾病中细胞间黏附缺陷提供了可能的结构假设。最后,我们指出了该结构可能赋予机械应力弹性的特征。我们的模型为生成关于正常和疾病状态下桥粒蛋白的结构和功能的可实验验证的假设提供了基础。