Sihn Duho, Kwon Oh-Sang, Kim Sung-Phil
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
Front Comput Neurosci. 2023 Jun 15;17:1164595. doi: 10.3389/fncom.2023.1164595. eCollection 2023.
Efficient coding that minimizes informational redundancy of neural representations is a widely accepted neural coding principle. Despite the benefit, maximizing efficiency in neural coding can make neural representation vulnerable to random noise. One way to achieve robustness against random noise is smoothening neural responses. However, it is not clear whether the smoothness of neural responses can hold robust neural representations when dynamic stimuli are processed through a hierarchical brain structure, in which not only random noise but also systematic error due to temporal lag can be induced.
In the present study, we showed that smoothness via spatio-temporally efficient coding can achieve both efficiency and robustness by effectively dealing with noise and neural delay in the visual hierarchy when processing dynamic visual stimuli.
The simulation results demonstrated that a hierarchical neural network whose bidirectional synaptic connections were learned through spatio-temporally efficient coding with natural scenes could elicit neural responses to visual moving bars similar to those to static bars with the identical position and orientation, indicating robust neural responses against erroneous neural information. It implies that spatio-temporally efficient coding preserves the structure of visual environments locally in the neural responses of hierarchical structures.
The present results suggest the importance of a balance between efficiency and robustness in neural coding for visual processing of dynamic stimuli across hierarchical brain structures.
使神经表征的信息冗余最小化的高效编码是一种被广泛接受的神经编码原则。尽管有其益处,但在神经编码中最大化效率会使神经表征容易受到随机噪声的影响。实现对随机噪声鲁棒性的一种方法是使神经反应平滑。然而,当动态刺激通过分层脑结构进行处理时,尚不清楚神经反应的平滑性是否能够保持鲁棒的神经表征,在这种结构中不仅会引入随机噪声,还会由于时间滞后导致系统误差。
在本研究中,我们表明,通过时空高效编码实现的平滑性能够在处理动态视觉刺激时,通过有效应对视觉层级中的噪声和神经延迟,同时实现效率和鲁棒性。
模拟结果表明,一个双向突触连接通过对自然场景进行时空高效编码学习得到的分层神经网络,能够引发对视觉移动条的神经反应,类似于对具有相同位置和方向的静态条的反应,这表明对错误神经信息具有鲁棒的神经反应。这意味着时空高效编码在分层结构的神经反应中局部保留了视觉环境的结构。
目前的结果表明,在跨分层脑结构对动态刺激进行视觉处理的神经编码中,效率和鲁棒性之间平衡的重要性。