Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543.
Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543.
Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2303356120. doi: 10.1073/pnas.2303356120. Epub 2023 Jul 3.
Diatoms are a group of phytoplankton that contribute disproportionately to global primary production. Traditional paradigms that suggest diatoms are consumed primarily by larger zooplankton are challenged by sporadic parasitic "epidemics" within diatom populations. However, our understanding of diatom parasitism is limited by difficulties in quantifying these interactions. Here, we observe the dynamics of (a protist) infection of an important diatom on the Northeast U.S. Shelf (NES), , with a combination of automated imaging-in-flow cytometry and a convolutional neural network image classifier. Application of the classifier to >1 billion images from a nearshore time series and >20 survey cruises across the broader NES reveals the spatiotemporal gradients and temperature dependence of abundance and infection dynamics. Suppression of parasitoid infection at temperatures <4 °C drives annual cycles in both infection and abundance, with an annual maximum in infection observed in the fall-winter preceding an annual maximum in host abundance in the winter-spring. This annual cycle likely varies spatially across the NES in response to variable annual cycles in water temperature. We show that infection remains suppressed for ~2 mo following cold periods, possibly due to temperature-induced local extinctions of the strain(s) that infect . These findings have implications for predicting impacts of a warming NES surface ocean on abundance and infection dynamics and demonstrate the potential of automated plankton imaging and classification to quantify phytoplankton parasitism in nature across unprecedented spatiotemporal scales.
硅藻是一类浮游植物,对全球初级生产力的贡献不成比例。传统观点认为,硅藻主要被较大的浮游动物消耗,但硅藻种群中偶尔发生的寄生“流行”现象对这一观点提出了挑战。然而,我们对硅藻寄生的理解受到了量化这些相互作用的困难的限制。在这里,我们观察了(一种原生动物)感染东北美国海域(NES)一种重要硅藻的动态,结合自动化成像流式细胞术和卷积神经网络图像分类器。该分类器应用于近岸时间序列的超过 10 亿张图像和更广泛的 NES 上的 20 次调查巡航,揭示了 的丰度和感染动态的时空梯度和温度依赖性。在温度<4°C 时,寄生性感染的抑制导致了 和感染的年度周期,在冬季-春季宿主丰度的年度最大值之前,秋季-冬季观察到感染的年度最大值。这种年度周期可能会因水温的年度变化而在 NES 上的不同空间发生变化。我们表明,在寒冷期后,感染仍会被抑制约 2 个月,这可能是由于感染 的 株(s)因温度诱导而局部灭绝。这些发现对预测变暖的 NES 表海洋对 的丰度和感染动态的影响具有重要意义,并展示了自动化浮游生物成像和分类在前所未有的时空尺度上量化自然中浮游植物寄生的潜力。