Suppr超能文献

卷积神经网络在有害藻华自动预警中的应用。

Application of a convolutional neural network to improve automated early warning of harmful algal blooms.

机构信息

Department of Oceanography, Texas A&M University, College Station, TX, 77843-3146, USA.

Advanced Science Research Center at the Graduate Center, City University of New York, New York, USA.

出版信息

Environ Sci Pollut Res Int. 2021 Jun;28(22):28544-28555. doi: 10.1007/s11356-021-12471-2. Epub 2021 Feb 5.

Abstract

Continuous monitoring and early warning together represent an important mitigation strategy for harmful algal blooms (HAB). The coast of Texas experiences periodic blooms of three HAB dinoflagellates: Karenia brevis, Dinophysis ovum, and Prorocentrum texanum. A plankton image data set acquired by an Imaging FlowCytobot over a decade of operation was used to train and evaluate two new automated image classifiers. A 112 class, random forest classifier (RF_112) and a 112 class, convolutional neural network classifier (CNN_112) were developed and compared with an existing, 54 class, random forest classifier (RF_54) already in use as an early warning notification system. Both 112 class classifiers exhibited improved performance over the RF_54 classifier when tested on three different HAB species with the CNN_112 classifier producing fewer false positives and false negatives in most of the cases tested. For K. brevis and P. texanum, the current threshold of 2 cellsmL was identified as the best threshold to minimize the number of false positives and false negatives. For D. ovum, a threshold of 1 cellmL was found to produce the best results with regard to the number of false positives/negatives. A lower threshold will result in earlier notification of an increase in cell concentration and will provide state health managers with increased lead time to prepare for an impending HAB.

摘要

连续监测和早期预警共同构成了有害藻华 (HAB) 的重要缓解策略。德克萨斯州沿海地区定期出现三种 HAB 甲藻:夜光藻、卵形膝沟藻和原甲藻。十多年来,一台成像流式细胞仪获取的浮游生物图像数据集被用于训练和评估两种新的自动图像分类器。开发了一个具有 112 个类别的随机森林分类器 (RF_112) 和一个具有 112 个类别的卷积神经网络分类器 (CNN_112),并将其与现有的、用于早期预警通知系统的 54 个类别的随机森林分类器 (RF_54) 进行了比较。在对三种不同的 HAB 物种进行测试时,这两个 112 个类别的分类器的性能均优于 RF_54 分类器,其中 CNN_112 分类器在大多数测试案例中产生的假阳性和假阴性较少。对于夜光藻和原甲藻,确定 2 个细胞/mL 作为最佳阈值可以最大限度地减少假阳性和假阴性的数量。对于卵形膝沟藻,发现 1 个细胞/mL 的阈值在假阳性/阴性数量方面产生了最佳结果。较低的阈值将导致更早地通知细胞浓度增加,并为州卫生管理人员提供更多的准备时间来应对即将到来的 HAB。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验