Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.
Departamento de Ecología e Instituto del Agua, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
Glob Chang Biol. 2023 Sep;29(17):5033-5043. doi: 10.1111/gcb.16834. Epub 2023 Jul 4.
Forecasting long-term consequences of global warming requires knowledge on thermal mortality and how heat stress interacts with other environmental stressors on different timescales. Here, we describe a flexible analytical framework to forecast mortality risks by combining laboratory measurements on tolerance and field temperature records. Our framework incorporates physiological acclimation effects, temporal scale differences and the ecological reality of fluctuations in temperature, and other factors such as oxygen. As a proof of concept, we investigated the heat tolerance of amphipods Dikerogammarus villosus and Echinogammarus trichiatus in the river Waal, the Netherlands. These organisms were acclimated to different temperatures and oxygen levels. By integrating experimental data with high-resolution field data, we derived the daily heat mortality probabilities for each species under different oxygen levels, considering current temperatures as well as 1 and 2°C warming scenarios. By expressing heat stress as a mortality probability rather than a upper critical temperature, these can be used to calculate cumulative annual mortality, allowing the scaling up from individuals to populations. Our findings indicate a substantial increase in annual mortality over the coming decades, driven by projected increases in summer temperatures. Thermal acclimation and adequate oxygenation improved heat tolerance and their effects were magnified on longer timescales. Consequently, acclimation effects appear to be more effective than previously recognized and crucial for persistence under current temperatures. However, even in the best-case scenario, mortality of D. villosus is expected to approach 100% by 2100, while E. trichiatus appears to be less vulnerable with mortality increasing to 60%. Similarly, mortality risks vary spatially: In southern, warmer rivers, riverine animals will need to shift from the main channel toward the cooler head waters to avoid thermal mortality. Overall, this framework generates high-resolution forecasts on how rising temperatures, in combination with other environmental stressors such as hypoxia, impact ecological communities.
预测全球变暖的长期后果需要了解热死亡率以及热应激如何在不同时间尺度上与其他环境胁迫因素相互作用。在这里,我们描述了一个灵活的分析框架,该框架通过将实验室耐受性测量与野外温度记录相结合来预测死亡率风险。我们的框架结合了生理驯化效应、时间尺度差异以及温度波动的生态现实和其他因素,如氧气。作为概念验证,我们研究了荷兰瓦尔河中的两种片脚类动物——杜氏泥蟹(Dikerogammarus villosus)和三刺真猛水蚤(Echinogammarus trichiatus)的耐热性。这些生物适应了不同的温度和氧气水平。通过将实验数据与高分辨率野外数据相结合,我们考虑到当前温度以及 1°C 和 2°C 的变暖情景,为每个物种在不同氧气水平下得出了每日热死亡率概率。通过将热应激表示为死亡率概率而不是上临界温度,可以将其用于计算累积年死亡率,从而将个体扩展到种群。我们的研究结果表明,未来几十年由于夏季温度的预期升高,每年的死亡率将大幅增加。热驯化和充足的氧气供应提高了耐热性,其效果在更长的时间尺度上放大。因此,驯化效应似乎比以前认识到的更有效,对于在当前温度下的生存至关重要。然而,即使在最佳情况下,到 2100 年,D. villosus 的死亡率预计也将接近 100%,而 E. trichiatus 的死亡率似乎增加到 60%,不太脆弱。同样,死亡率风险在空间上也存在差异:在较温暖的南部河流中,河流动物将需要从主河道转移到较冷的源头,以避免热死亡率。总的来说,这个框架可以生成关于温度升高如何与其他环境胁迫因素(如缺氧)相结合影响生态群落的高分辨率预测。