Suppr超能文献

在变温动物中,热耐受限度与新陈代谢相关。

Heat limits scale with metabolism in ectothermic animals.

作者信息

Payne Nicholas L, Kong Jacinta D, Jackson Andrew L, Bates Amanda E, Morley Simon A, Smith James A, Arnoldi Jean-Francois

机构信息

Trinity College Dublin, Dublin, Ireland.

University of Victoria, Victoria, British Columbia, Canada.

出版信息

J Anim Ecol. 2025 Jun;94(6):1307-1316. doi: 10.1111/1365-2656.70042. Epub 2025 May 12.

Abstract

Ectotherms given time to acclimate to warmer environments, habitats or experimental treatments tend to tolerate higher maximum temperatures, but only slightly higher. This means warmer acclimated organisms live closer to their physiological temperature limits (their 'critical temperatures'). The reason for this modest-and often highly variable-plasticity of heat limits is debated but raises concerns for resilience to future climate warming. Experiments have shown heat tolerance is dependent not just on the magnitude of thermal stress but also on time via exposure duration. This implicates rate processes in the regulation of heat limits, yet few studies have explored this possibility. Invoking biological rates (such as metabolic rate) to explain the plasticity of critical temperatures is complicated by the need to account for temperature, time and the nonlinear dependence of rates on temperature. We developed a new approach to explore whether incorporating estimated metabolic rate and its thermal scaling could explain the apparently modest and highly variable capacities of ectotherms to adjust their heat limits. To do this, we re-evaluate a large thermal tolerance dataset for diverse ectothermic animals heated from different acclimation temperatures up to their critical temperature. By integrating temperature, time and the exponential relationship between temperature and metabolic rate, we compute a cumulative 'metabolic currency' that ectotherms expend (or accumulate) before reaching their heat limits. We then explore how this quantity varies for ectotherms acclimated to different temperatures. Our 'metabolic rescaling' has a dramatic impact on explaining variation in heat limits, revealing that heating tolerance is effectively fixed within a species such that heat limits from any acclimation temperature can be predicted with remarkable accuracy by measuring heat limits at any other acclimation temperature. Heating rate also has a strong, consistent, influence. Evidently, warmer-acclimated organisms only marginally elevate their critical temperatures because they have a fixed amount of energy to spend during heating, and they spend it at a faster rate in warmer temperatures. This provides a very different perspective to leading explanations that organismal heat limits are constrained by hard physiological boundaries and instead encourages unification of thermal tolerance and metabolic scaling theory.

摘要

给予时间适应温暖环境、栖息地或实验处理的变温动物往往能够耐受更高的最高温度,但仅略高一点。这意味着适应温暖环境的生物体生活在更接近其生理温度极限(其“临界温度”)的地方。这种热极限的适度且通常高度可变的可塑性的原因存在争议,但引发了对未来气候变暖适应力的担忧。实验表明,耐热性不仅取决于热应激的强度,还取决于暴露持续时间这一因素。这暗示了速率过程在热极限调节中的作用,但很少有研究探讨这种可能性。用生物速率(如代谢速率)来解释临界温度的可塑性很复杂,因为需要考虑温度、时间以及速率对温度的非线性依赖性。我们开发了一种新方法,以探究纳入估计的代谢速率及其热标度是否能够解释变温动物调节其热极限的能力为何明显适度且高度可变。为此,我们重新评估了一个大型热耐受性数据集,该数据集涉及从不同适应温度加热至临界温度的多种变温动物。通过整合温度、时间以及温度与代谢速率之间的指数关系,我们计算出变温动物在达到热极限之前消耗(或积累)的累积“代谢货币”。然后,我们探究这个量对于适应不同温度的变温动物是如何变化的。我们的“代谢重标度”对解释热极限的变化有显著影响,表明一个物种内的耐热性实际上是固定的,以至于通过测量任何其他适应温度下的热极限,就可以非常准确地预测来自任何适应温度的热极限。加热速率也有强烈且一致的影响。显然,适应温暖环境的生物体仅略微提高其临界温度,因为它们在加热过程中有固定量的能量可供消耗,并且在较高温度下消耗得更快。这为主要解释提供了一个截然不同的视角,即生物体的热极限受到严格生理界限的限制,相反,它鼓励将热耐受性和代谢标度理论统一起来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验