Sousa-Ortega Carlos, Alcantara Maria Cristina
Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad de Sevilla, Seville, Spain.
Protección de Cultivos, Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Cordoba, Spain.
Pest Manag Sci. 2023 Nov;79(11):4414-4422. doi: 10.1002/ps.7642. Epub 2023 Jul 13.
The seedling stage is the most vulnerable period of growth and development for annual weeds and an important target for weed management operations. To address this, several weed emergence models have been developed, but none are commercially available. Therefore, this study aims to develop a web application that implements predictive weed emergence models for eight different weed species, utilizing weather data sourced from public weather stations.
Lolium rigidum Gaudin presented a mean root mean squared error (RMSE) value of 8.9, achieving an RMSE value below 15 (success rate) in 84.5% of cases. This result may be attributed to the use of a water potential base, set at -0.4 MPa, to evaluate water availability. Centaurea diluta Aiton achieved an RMSE value below 15 in all situations, with an average value of 9.0. This weed showed higher accuracy at southern sites than northern sites. Conversely, Avena sterilis ssp. ludoviciana (Durieu) Gillet & Magne achieved higher precision at northern sites where no dry periods occurred. The newly developed model for Bromus diandrus Roth. achieved an average RMSE value of 7.7 and a 100% success rate. Papaver rhoeas L. and the three Phalaris species exhibited lower accuracy in this study than in previous ones. Nonetheless, the success rates for Papaver rhoeas and Phalaris paradoxa L. were still above 70%.
Models for C. diluta, B. diandrus, L. rigidum, Papaver rhoeas and Phalaris paradoxa have demonstrated potential for adoption in commercial production, while Phalaris minor and Phalaris brachystachys models require refinement. © 2023 Society of Chemical Industry.
苗期是一年生杂草生长发育最脆弱的时期,也是杂草管理作业的重要目标。为解决这一问题,已开发了多种杂草出苗模型,但均未商业化。因此,本研究旨在开发一个网络应用程序,利用从公共气象站获取的气象数据,为八种不同杂草物种实现预测性杂草出苗模型。
硬直黑麦草的平均均方根误差(RMSE)值为8.9,在84.5%的情况下RMSE值低于15(成功率)。这一结果可能归因于使用了设定为-0.4 MPa的水势基准来评估水分有效性。稀释矢车菊在所有情况下RMSE值均低于15,平均值为9.0。这种杂草在南部地区的准确性高于北部地区。相反,卢氏野燕麦在没有干旱期的北部地区精度更高。新开发的罗氏雀麦模型的平均RMSE值为7.7,成功率为100%。在本研究中,罂粟和三种虉草属物种的准确性低于之前的研究。尽管如此,罂粟和奇异虉草的成功率仍高于70%。
稀释矢车菊、罗氏雀麦、硬直黑麦草、罂粟和奇异虉草的模型已显示出在商业生产中应用的潜力,而小虉草和短穗虉草的模型需要改进。© 2023化学工业协会。