Université Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France.
Phys Chem Chem Phys. 2023 Jul 12;25(27):18439-18453. doi: 10.1039/d3cp01869e.
The respective influences of particle shape and size on the energetic stability of five-component multimetallic nanoparticles have been computationally investigated for AlCuFeCrNi and AuCuPdNiCo mixtures at equiconcentration. Using available embedded-atom model potentials, exchange Monte Carlo simulations possibly assisted with systematic quenching, we explore tools to approach ideal phase equilibrium in such high-entropy nanoalloys. In particular, we show how deviations to ideal solid solution behaviors can be characterized using percolation analyses, and how the contribution of alloying fluctuations at finite temperature can be inferred to evaluate the entropy of mixing in such nonideal cases. An approximation to the entropy of mixing based on pair correlations only is also found to capture the behavior of the thermodynamical mixing entropy quite well, and can be used as an order parameter of mixing. While the AlCuFeCrNi mixture appears to mix reasonably well in all cases considered, cobalt and nickel segregate significantly in AuCuPdNiCo nanoparticles, deviating strongly from ideal random mixtures. A simple Gaussian regression model applied to a coarse distribution of concentrations is found to correctly predict conditions for optimising the mixing thermodynamical properties of the miscible AlCuFeCrNi nanoparticle.
已针对等浓度的 AlCuFeCrNi 和 AuCuPdNiCo 混合物,通过计算研究了颗粒形状和尺寸对五组分多金属纳米粒子能量稳定性的各自影响。利用现有的嵌入原子模型势,我们可能借助系统淬火进行交换蒙特卡罗模拟,探索了在这种高熵纳米合金中接近理想相平衡的方法。特别是,我们展示了如何使用渗流分析来描述对理想固溶体行为的偏离,以及如何推断在有限温度下合金化波动的贡献,以评估这种非理想情况下的混合熵。还发现,仅基于对关联的混合熵近似值可以很好地捕捉热力学混合熵的行为,并可用作混合的序参量。虽然在所考虑的所有情况下,AlCuFeCrNi 混合物的混合情况都相当好,但钴和镍在 AuCuPdNiCo 纳米粒子中会显著分离,强烈偏离理想的随机混合物。对浓度的粗略分布应用简单的高斯回归模型,发现可以正确预测优化可混 AlCuFeCrNi 纳米粒子混合热力学性质的条件。