Krouna Syrine, Acheche Anissa, Wang Guillaume, Pena Nathaly Ortiz, Gatti Riccardo, Ricolleau Christian, Amara Hakim, Nelayah Jaysen, Alloyeau Damien
Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité - CNRS, Paris, 75013, France.
Laboratoire d'Etudes des Microstructures, UMR 104 CNRS-ONERA, Université Paris-Saclay, Châtillon, 92320, France.
Adv Mater. 2025 Jan;37(4):e2414510. doi: 10.1002/adma.202414510. Epub 2024 Nov 21.
High entropy alloy nanoparticles bring hope to developing more efficient nanomaterials for high-temperature applications. Nevertheless, the enhanced thermal stability of nearly equiatomic nanoalloys containing at least 5 metals is nothing more than theoretical speculation about the impact of thermodynamic contributions on their structural properties and remains to be proven. Here, in situ aberration-corrected scanning transmission electron microscopy (STEM) and molecular dynamics simulations are combined to investigate at the atomic scale the thermal behavior of AuCoCuNiPt nanoparticles (NPs) from 298 to 973 K. Both in situ STEM heating and atomistic simulations reveal strong structural and chemical evolutions in the NPs with the formation and melting of an AuCu layer at the surface of NPs at high temperature. This phase separation that appears progressively with temperature is driven by pronounced atomic diffusion that is surprisingly more active in these quinary nanoalloys than in monometallic and bimetallic subsystems. Besides ruling out the existence of sluggish diffusion in AuCoCuNiPt nanoalloys and lowering their temperature range of application, the study allows distinguishing kinetic and thermodynamic effects on their structural properties, which is an essential prerequisite to better control the synthesis of complex nanomaterials.
高熵合金纳米颗粒为开发用于高温应用的更高效纳米材料带来了希望。然而,含有至少5种金属的近等原子纳米合金热稳定性的增强不过是关于热力学贡献对其结构性能影响的理论推测,仍有待证实。在此,结合原位像差校正扫描透射电子显微镜(STEM)和分子动力学模拟,在原子尺度上研究了AuCoCuNiPt纳米颗粒(NPs)在298至973 K温度范围内的热行为。原位STEM加热和原子模拟均表明,随着温度升高,纳米颗粒表面形成并熔化AuCu层,纳米颗粒发生了强烈的结构和化学演变。这种随温度逐渐出现的相分离是由明显的原子扩散驱动的,令人惊讶的是,这种原子扩散在这些五元纳米合金中比在单金属和双金属子系统中更活跃。该研究除了排除AuCoCuNiPt纳米合金中存在缓慢扩散并降低其应用温度范围外,还能够区分动力学和热力学对其结构性能的影响,这是更好地控制复杂纳米材料合成的重要前提。