Suppr超能文献

一种优化的 PDMS 微流控装置,用于超快速和高通量成像流式细胞术。

An optimized PDMS microfluidic device for ultra-fast and high-throughput imaging flow cytometry.

机构信息

The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.

Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan.

出版信息

Lab Chip. 2023 Aug 8;23(16):3571-3580. doi: 10.1039/d3lc00237c.

Abstract

Imaging flow cytometry (IFC) is a powerful tool for cell detection and analysis due to its high throughput and compatibility in image acquisition. Optical time-stretch (OTS) imaging is considered as one of the most promising imaging techniques for IFC because it can realize cell imaging at a flow speed of around 60 m s. However, existing PDMS-based microchannels cannot function at flow velocities higher than 10 m s; thus the capability of OTS-based IFC is significantly limited. To overcome the velocity barrier for PDMS-based microchannels, we proposed an optimized design of PDMS-based microchannels with reduced hydraulic resistance and 3D hydrodynamic focusing capability, which can drive fluids at an ultra-high flow velocity (of up to 40 m s) by using common syringe pumps. To verify the feasibility of our design, we fabricated and installed the microchannel in an OTS IFC system. The experimental results first proved that the proposed microchannel can support a stable flow velocity of up to 40 m s without any leakage or damage. Then, we demonstrated that the OTS IFC is capable of imaging cells at a velocity of up to 40 m s with good quality. To the best of our knowledge, it is the first time that IFC has achieved such a high flow velocity just by using a PDMS-glass chip. Moreover, high velocity can enhance the focusing of cells on the optical focal plane, increasing the number of detected cells and the throughput. This work provides a promising solution for IFC to fully release its capability of advanced imaging techniques by operating at an extremely high screening throughput.

摘要

成像流式细胞术(IFC)因其高通量和在图像采集方面的兼容性而成为细胞检测和分析的有力工具。光时拉伸(OTS)成像是被认为是 IFC 中最有前途的成像技术之一,因为它可以实现 60 m s 左右的流速下的细胞成像。然而,现有的基于 PDMS 的微通道不能在流速高于 10 m s 的情况下运行;因此,基于 OTS 的 IFC 的能力受到了显著限制。为了克服基于 PDMS 的微通道的速度障碍,我们提出了一种具有减小的液压阻力和 3D 流体动力学聚焦能力的基于 PDMS 的微通道的优化设计,该设计可以通过使用普通注射器泵以超高速率(高达 40 m s)驱动流体。为了验证我们设计的可行性,我们制造并安装了微通道在 OTS IFC 系统中。实验结果首先证明,所提出的微通道可以在不泄漏或损坏的情况下支持高达 40 m s 的稳定流速。然后,我们证明了 OTS IFC 能够以高达 40 m s 的速度成像质量良好的细胞。据我们所知,这是 IFC 首次仅使用 PDMS-玻璃芯片即可实现如此高的流速。此外,高速可以增强细胞在光学焦平面上的聚焦,增加检测到的细胞数量和吞吐量。这项工作为 IFC 提供了一种有前途的解决方案,通过以极高的筛选通量运行来充分释放其先进成像技术的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验