Suppr超能文献

奶牛亚临床乳腺炎感染时乳体细胞的全转录组图谱分析。

Transcriptome-wide mapping of milk somatic cells upon subclinical mastitis infection in dairy cattle.

作者信息

Bisutti Vittoria, Mach Núria, Giannuzzi Diana, Vanzin Alice, Capra Emanuele, Negrini Riccardo, Gelain Maria Elena, Cecchinato Alessio, Ajmone-Marsan Paolo, Pegolo Sara

机构信息

DAFNAE, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy.

IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin Des Capelles, Toulouse, 31300, France.

出版信息

J Anim Sci Biotechnol. 2023 Jul 5;14(1):93. doi: 10.1186/s40104-023-00890-9.

Abstract

BACKGROUND

Subclinical intramammary infection (IMI) represents a significant problem in maintaining dairy cows' health. Disease severity and extent depend on the interaction between the causative agent, environment, and host. To investigate the molecular mechanisms behind the host immune response, we used RNA-Seq for the milk somatic cells (SC) transcriptome profiling in healthy cows (n = 9), and cows naturally affected by subclinical IMI from Prototheca spp. (n = 11) and Streptococcus agalactiae (S. agalactiae; n = 11). Data Integration Analysis for Biomarker discovery using Latent Components (DIABLO) was used to integrate transcriptomic data and host phenotypic traits related to milk composition, SC composition, and udder health to identify hub variables for subclinical IMI detection.

RESULTS

A total of 1,682 and 2,427 differentially expressed genes (DEGs) were identified when comparing Prototheca spp. and S. agalactiae to healthy animals, respectively. Pathogen-specific pathway analyses evidenced that Prototheca's infection upregulated antigen processing and lymphocyte proliferation pathways while S. agalactiae induced a reduction of energy-related pathways like the tricarboxylic acid cycle, and carbohydrate and lipid metabolism. The integrative analysis of commonly shared DEGs between the two pathogens (n = 681) referred to the core-mastitis response genes, and phenotypic data evidenced a strong covariation between those genes and the flow cytometry immune cells (r = 0.72), followed by the udder health (r = 0.64) and milk quality parameters (r = 0.64). Variables with r ≥ 0.90 were used to build a network in which the top 20 hub variables were identified with the Cytoscape cytohubba plug-in. The genes in common between DIABLO and cytohubba (n = 10) were submitted to a ROC analysis which showed they had excellent predictive performances in terms of discriminating healthy and mastitis-affected animals (sensitivity > 0.89, specificity > 0.81, accuracy > 0.87, and precision > 0.69). Among these genes, CIITA could play a key role in regulating the animals' response to subclinical IMI.

CONCLUSIONS

Despite some differences in the enriched pathways, the two mastitis-causing pathogens seemed to induce a shared host immune-transcriptomic response. The hub variables identified with the integrative approach might be included in screening and diagnostic tools for subclinical IMI detection.

摘要

背景

亚临床型乳房内感染(IMI)是维持奶牛健康的一个重大问题。疾病的严重程度和范围取决于病原体、环境和宿主之间的相互作用。为了研究宿主免疫反应背后的分子机制,我们使用RNA测序对健康奶牛(n = 9)以及自然感染原虫属亚临床IMI的奶牛(n = 11)和无乳链球菌(无乳链球菌;n = 11)的乳体细胞(SC)转录组进行分析。使用基于潜在成分的生物标志物发现数据整合分析(DIABLO)来整合转录组数据以及与乳成分、SC组成和乳房健康相关的宿主表型特征,以识别亚临床IMI检测的核心变量。

结果

将原虫属和无乳链球菌分别与健康动物进行比较时,共鉴定出1682个和2427个差异表达基因(DEG)。病原体特异性通路分析表明,原虫感染上调了抗原加工和淋巴细胞增殖通路,而无乳链球菌则导致能量相关通路(如三羧酸循环以及碳水化合物和脂质代谢)减少。对两种病原体之间共同的DEG(n = 681)进行综合分析,确定了核心乳腺炎反应基因,表型数据表明这些基因与流式细胞术免疫细胞之间存在很强的共变关系(r = 0.72),其次是乳房健康(r = 0.64)和牛奶质量参数(r = 0.64)。r≥0.90的变量用于构建网络,通过Cytoscape的cytohubba插件确定了前20个核心变量。DIABLO和cytohubba之间共有的基因(n = 10)进行了ROC分析,结果表明它们在区分健康动物和受乳腺炎影响的动物方面具有出色的预测性能(敏感性>0.89,特异性>0.81,准确性>0.87,精确性>0.69)。在这些基因中,CIITA可能在调节动物对亚临床IMI的反应中起关键作用。

结论

尽管富集通路存在一些差异,但两种引起乳腺炎的病原体似乎诱导了共同的宿主免疫转录组反应。通过综合方法确定的核心变量可能会被纳入亚临床IMI检测的筛查和诊断工具中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验