Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
J Phys Chem A. 2023 Jul 13;127(27):5620-5628. doi: 10.1021/acs.jpca.3c01509. Epub 2023 Jul 4.
Gas-phase Förster resonance energy transfer (FRET) combines mass spectrometry and fluorescence spectroscopy for the conformational analysis of mass-selected biomolecular ions. In FRET, fluorophore pairs are typically covalently attached to a biomolecule using short linkers, which affect the mobility of the dye and the relative orientation of the transition dipole moments of the donor and acceptor. Intramolecular interactions may further influence the range of motion. Yet, little is known about this factor, despite the importance of intramolecular interactions in the absence of a solvent. In this study, we applied transition metal ion FRET (tmFRET) to probe the mobility of a single chromophore pair (Rhodamine 110 and Cu) as a function of linker lengths to assess the relevance of intramolecular interactions. Increasing FRET efficiencies were observed with increasing linker length, ranging from 5% (2 atoms) to 28% (13 atoms). To rationalize this trend, we profiled the conformational landscape of each model system using molecular dynamics (MD) simulations. We captured intramolecular interactions that promote a population shift toward smaller donor-acceptor separation for longer linker lengths and induce a significant increase in the acceptor's transition dipole moment. The presented methodology is a first step toward the explicit consideration of a fluorophore's range of motion in the interpretation of gas-phase FRET experiments.
气相Förster 共振能量转移(FRET)将质谱和荧光光谱结合起来,用于质量选择的生物分子离子的构象分析。在 FRET 中,荧光团对通常通过短接头共价连接到生物分子上,这会影响染料的迁移率和供体与受体的跃迁偶极矩的相对取向。分子内相互作用可能进一步影响运动范围。然而,尽管在没有溶剂的情况下分子内相互作用很重要,但人们对此因素知之甚少。在这项研究中,我们应用过渡金属离子 FRET(tmFRET)来探测单个发色团对(若丹明 110 和 Cu)的迁移率作为接头长度的函数,以评估分子内相互作用的相关性。随着接头长度的增加,观察到 FRET 效率增加,范围从 5%(2 个原子)到 28%(13 个原子)。为了解释这一趋势,我们使用分子动力学(MD)模拟对每个模型系统的构象景观进行了分析。我们捕获了促进更长接头长度下供体-受体分离的较小群体转移的分子内相互作用,并诱导了受体跃迁偶极矩的显著增加。所提出的方法是在解释气相 FRET 实验时明确考虑荧光团运动范围的第一步。