Suppr超能文献

电压校准,精细可调的蛋白质组装。

Voltage-calibrated, finely tunable protein assembly.

机构信息

Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA.

Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.

出版信息

J R Soc Interface. 2023 Jul;20(204):20230183. doi: 10.1098/rsif.2023.0183. Epub 2023 Jul 5.

Abstract

Neuronally triggered phosphorylation drives the calibrated and cyclable assembly of the reflectin signal transducing proteins, resulting in their fine tuning of colours reflected from specialized skin cells in squid for camouflage and communication. In close parallel to this physiological behaviour, we demonstrate for the first time that electrochemical reduction of reflectin A1, used as a surrogate for charge neutralization by phosphorylation, triggers voltage-calibrated, proportional and cyclable control of the size of the protein's assembly. Electrochemically triggered condensation, folding and assembly were simultaneously analysed using dynamic light scattering, circular dichroism and UV absorbance spectroscopies. The correlation of assembly size with applied potential is probably linked to reflectin's mechanism of dynamic arrest, which is controlled by the extent of neuronally triggered charge neutralization and the corresponding fine tuning of colour in the biological system. This work opens a new perspective on electrically controlling and simultaneously observing reflectin assembly and, more broadly, provides access to manipulate, observe and electrokinetically control the formation of intermediates and conformational dynamics of macromolecular systems.

摘要

神经元触发的磷酸化驱动反射素信号转导蛋白的校准和可循环组装,从而精细调节鱿鱼特化皮肤细胞反射的颜色,用于伪装和通讯。与这种生理行为非常相似,我们首次证明,反射素 A1 的电化学还原(用作磷酸化引起的电荷中和的替代物)可触发电压校准、比例和可循环控制蛋白质组装的大小。使用动态光散射、圆二色性和紫外吸收光谱法同时分析电化学触发的缩合、折叠和组装。组装大小与外加电位的相关性可能与反射素的动态捕获机制有关,该机制受神经元触发的电荷中和程度以及生物系统中颜色的精细调节控制。这项工作为电控制和同时观察反射素组装开辟了新的视角,更广泛地说,为操纵、观察和电动控制大分子系统的中间产物形成和构象动力学提供了途径。

相似文献

1
Voltage-calibrated, finely tunable protein assembly.
J R Soc Interface. 2023 Jul;20(204):20230183. doi: 10.1098/rsif.2023.0183. Epub 2023 Jul 5.
2
Electrochemistry as a surrogate for protein phosphorylation: voltage-controlled assembly of reflectin A1.
J R Soc Interface. 2020 Dec;17(173):20200774. doi: 10.1098/rsif.2020.0774. Epub 2020 Dec 2.
3
Protein Charge Neutralization Is the Proximate Driver Dynamically Tuning Reflectin Assembly.
Int J Mol Sci. 2024 Aug 17;25(16):8954. doi: 10.3390/ijms25168954.
4
Cyclable Condensation and Hierarchical Assembly of Metastable Reflectin Proteins, the Drivers of Tunable Biophotonics.
J Biol Chem. 2016 Feb 19;291(8):4058-68. doi: 10.1074/jbc.M115.686014. Epub 2015 Dec 30.
6
A colloidal model for the equilibrium assembly and liquid-liquid phase separation of the reflectin A1 protein.
Biophys J. 2024 Sep 17;123(18):3065-3079. doi: 10.1016/j.bpj.2024.07.004. Epub 2024 Jul 4.
7
Reversible and size-controlled assembly of reflectin proteins using a charged azobenzene photoswitch.
Chem Sci. 2024 Jul 17;15(33):13279-13289. doi: 10.1039/d4sc03299c. eCollection 2024 Aug 22.
8
Structures, Organization, and Function of Reflectin Proteins in Dynamically Tunable Reflective Cells.
J Biol Chem. 2015 Jun 12;290(24):15238-49. doi: 10.1074/jbc.M115.638254. Epub 2015 Apr 26.
9
The role of protein assembly in dynamically tunable bio-optical tissues.
Biomaterials. 2010 Feb;31(5):793-801. doi: 10.1016/j.biomaterials.2009.10.038. Epub 2009 Nov 10.
10
Cephalopod-Mimetic Tunable Photonic Coatings Assembled from Quasi-Monodispersed Reflectin Protein Nanoparticles.
ACS Appl Mater Interfaces. 2022 May 11;14(18):21436-21452. doi: 10.1021/acsami.2c01999. Epub 2022 Apr 27.

引用本文的文献

1
Electrochemically Driven Optical Dynamics of Reflectin Protein Films.
Adv Mater. 2025 Mar;37(12):e2411005. doi: 10.1002/adma.202411005. Epub 2025 Feb 17.
2
Charge screening and hydrophobicity drive progressive assembly and liquid-liquid phase separation of reflectin protein.
J Biol Chem. 2025 Mar;301(3):108277. doi: 10.1016/j.jbc.2025.108277. Epub 2025 Feb 6.
3
Protein Charge Neutralization Is the Proximate Driver Dynamically Tuning Reflectin Assembly.
Int J Mol Sci. 2024 Aug 17;25(16):8954. doi: 10.3390/ijms25168954.
4
Reversible and size-controlled assembly of reflectin proteins using a charged azobenzene photoswitch.
Chem Sci. 2024 Jul 17;15(33):13279-13289. doi: 10.1039/d4sc03299c. eCollection 2024 Aug 22.
5
A colloidal model for the equilibrium assembly and liquid-liquid phase separation of the reflectin A1 protein.
Biophys J. 2024 Sep 17;123(18):3065-3079. doi: 10.1016/j.bpj.2024.07.004. Epub 2024 Jul 4.

本文引用的文献

2
Low Voltage Voltammetry Probes Proton Dissociation Equilibria of Amino Acids and Peptides.
Anal Chem. 2022 Mar 29;94(12):4948-4953. doi: 10.1021/acs.analchem.1c03371. Epub 2022 Mar 15.
4
Reversible electrochemical triggering and optical interrogation of polylysine α-helix formation.
Bioelectrochemistry. 2022 Apr;144:108007. doi: 10.1016/j.bioelechem.2021.108007. Epub 2021 Nov 26.
5
Colloidal systems with a short-range attraction and long-range repulsion: Phase diagrams, structures, and dynamics.
Curr Opin Colloid Interface Sci. 2019 Feb;39. doi: 10.1016/j.cocis.2019.01.016.
6
Electrochemistry as a surrogate for protein phosphorylation: voltage-controlled assembly of reflectin A1.
J R Soc Interface. 2020 Dec;17(173):20200774. doi: 10.1098/rsif.2020.0774. Epub 2020 Dec 2.
7
Pulsed electric fields induce modulation of protein liquid-liquid phase separation.
Soft Matter. 2020 Sep 30;16(37):8547-8553. doi: 10.1039/d0sm01478h.
9
Adaptive infrared-reflecting systems inspired by cephalopods.
Science. 2018 Mar 30;359(6383):1495-1500. doi: 10.1126/science.aar5191.
10
Self-Assembly of the Cephalopod Protein Reflectin.
Adv Mater. 2016 Oct;28(38):8405-8412. doi: 10.1002/adma.201601666. Epub 2016 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验