Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California.
Life Sciences, Soka University of America, Aliso Viejo, California.
Biophys J. 2024 Sep 17;123(18):3065-3079. doi: 10.1016/j.bpj.2024.07.004. Epub 2024 Jul 4.
Reflectin is an intrinsically disordered protein known for its ability to modulate the biophotonic camouflage of cephalopods based on its assembly-induced osmotic properties. Its reversible self-assembly into discrete, size-controlled clusters and condensed droplets are known to depend sensitively on the net protein charge, making reflectin stimuli-responsive to pH, phosphorylation, and electric fields. Despite considerable efforts to characterize this behavior, the detailed physical mechanisms of reflectin's assembly are not yet fully understood. Here, we pursue a coarse-grained molecular understanding of reflectin assembly using a combination of experiments and simulations. We hypothesize that reflectin assembly and phase behavior can be explained from a remarkably simple colloidal model whereby individual protein monomers effectively interact via a short-range attractive and long-range repulsive (SA-LR) pair potential. We parameterize a coarse-grained SA-LR interaction potential for reflectin A1 from small-angle x-ray scattering measurements, and then extend it to a range of pH values using Gouy-Chapman theory to model monomer-monomer electrostatic interactions. The pH-dependent SA-LR interaction is then used in molecular dynamics simulations of reflectin assembly, which successfully capture a number of qualitative features of reflectin, including pH-dependent formation of discrete-sized nanoclusters and liquid-liquid phase separation at high pH, resulting in a putative phase diagram for reflectin. Importantly, we find that at low pH size-controlled reflectin clusters are equilibrium assemblies, which dynamically exchange protein monomers to maintain an equilibrium size distribution. These findings provide a mechanistic understanding of the equilibrium assembly of reflectin, and suggest that colloidal-scale models capture key driving forces and interactions to explain thermodynamic aspects of native reflectin behavior. Furthermore, the success of SA-LR interactions presented in this study demonstrates the potential of a colloidal interpretation of interactions and phenomena in a range of intrinsically disordered proteins.
反射素是一种无规则卷曲蛋白,其能够根据组装诱导的渗透性质调节头足类动物的生物光子伪装,因而闻名于世。众所周知,其可逆自组装成离散的、大小可控的聚集体和凝聚液滴,强烈依赖于净蛋白电荷,这使得反射素对 pH 值、磷酸化和电场具有响应性。尽管人们做了大量的努力来描述这种行为,但反射素组装的详细物理机制尚未完全理解。在这里,我们使用实验和模拟的组合来研究反射素组装的粗粒度分子理解。我们假设,通过一个简单的胶体模型,可以解释反射素的组装和相行为,在该模型中,单个蛋白质单体通过短程吸引力和长程排斥(SA-LR)对有效相互作用。我们根据小角度 X 射线散射测量结果,为反射素 A1 粗粒化 SA-LR 相互作用势进行参数化,然后使用古伊-查普曼理论将其扩展到一系列 pH 值,以模拟单体-单体静电相互作用。然后,将 pH 依赖性 SA-LR 相互作用用于反射素组装的分子动力学模拟,成功捕获了反射素的许多定性特征,包括在高 pH 值下形成离散大小的纳米聚集体和液-液相分离,从而产生反射素的假设相图。重要的是,我们发现,在低 pH 值下,大小可控的反射素聚集体是平衡组装体,它们动态交换蛋白质单体以维持平衡的尺寸分布。这些发现为反射素的平衡组装提供了机制上的理解,并表明胶体尺度模型捕获了关键的驱动力和相互作用,以解释天然反射素行为的热力学方面。此外,本研究中呈现的 SA-LR 相互作用的成功表明了胶体解释一系列无规卷曲蛋白的相互作用和现象的潜力。