Hu Yaning, Zhang Shuo, Zhang Zedong, Zhou Hexin, Li Bing, Sun Zhiyi, Hu Xuemin, Yang Wenxiu, Li Xiaoyan, Wang Yu, Liu Shuhu, Wang Dingsheng, Lin Jie, Chen Wenxing, Wang Shuo
College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
Adv Mater. 2023 Oct;35(41):e2304130. doi: 10.1002/adma.202304130. Epub 2023 Sep 8.
The selective hydrogenation of alkynes is an important reaction; however, the catalytic activity and selectivity in this reaction are generally conflicting. In this study, ultrafine Pd nanoparticles (NPs) loaded on a graphite-like C N structure with nitrogen defects (Pd/DCN) are synthesized. The resulting Pd/DCN exhibits excellent photocatalytic performance in the transfer hydrogenation of alkynes with ammonia borane. The reaction rate and selectivity of Pd/DCN are superior to those of Pd/BCN (bulk C N without nitrogen defects) under visible-light irradiation. The characterization results and density functional theory calculations show that the Mott-Schottky effect in Pd/DCN can change the electronic density of the Pd NPs, and thus enhances the hydrogenation selectivity toward phenylacetylene. After 1 h, the hydrogenation selectivity of Pd/DCN reaches 95%, surpassing that of Pd/BCN (83%). Meanwhile, nitrogen defects in the supports improve the visible-light response and accelerate the transfer and separation of photogenerated charges to enhance the catalytic activity of Pd/DCN. Therefore, Pd/DCN exhibits higher efficiency under visible light, with a turnover frequency (TOF) of 2002 min . This TOF is five times that of Pd/DCN under dark conditions and 1.5 times that of Pd/BCN. This study provides new insights into the rational design of high-performance photocatalytic transfer hydrogenation catalysts.
炔烃的选择性氢化是一个重要的反应;然而,该反应中的催化活性和选择性通常相互矛盾。在本研究中,合成了负载在具有氮缺陷的类石墨C N结构上的超细钯纳米颗粒(Pd/DCN)。所得的Pd/DCN在氨硼烷对炔烃的转移氢化反应中表现出优异的光催化性能。在可见光照射下,Pd/DCN的反应速率和选择性优于Pd/BCN(无氮缺陷的块状C N)。表征结果和密度泛函理论计算表明,Pd/DCN中的莫特-肖特基效应可以改变钯纳米颗粒的电子密度,从而提高对苯乙炔的氢化选择性。1小时后,Pd/DCN的氢化选择性达到95%,超过了Pd/BCN(83%)。同时,载体中的氮缺陷改善了可见光响应,加速了光生电荷的转移和分离,从而提高了Pd/DCN的催化活性。因此,Pd/DCN在可见光下表现出更高的效率,周转频率(TOF)为2002 min⁻¹。该TOF是Pd/DCN在黑暗条件下的五倍,是Pd/BCN的1.5倍。本研究为高性能光催化转移氢化催化剂的合理设计提供了新的见解。