Wang Weikang, Zhou Hongjian, Liu Yanyan, Zhang Shengbo, Zhang Yunxia, Wang Guozhong, Zhang Haimin, Zhao Huijun
Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Small. 2020 Apr;16(13):e1906880. doi: 10.1002/smll.201906880. Epub 2020 Feb 20.
It is an important issue that exposed active nitrogen atoms (e.g., edge or amino N atoms) in graphitic carbon nitride (g-C N ) could participate in ammonia (NH ) synthesis during the photocatalytic nitrogen reduction reaction (NRR). Herein, the experimental results in this work demonstrate that the exposed active N atoms in g-C N nanosheets can indeed be hydrogenated and contribute to NH synthesis during the visible-light photocatalytic NRR. However, these exposed N atoms can be firmly stabilized through forming BNC coordination by means of B-doping in g-C N nanosheets (BCN) with a B-doping content of 13.8 wt%. Moreover, the formed BNC coordination in g-C N not only effectively enhances the visible-light harvesting and suppresses the recombination of photogenerated carriers in g-C N , but also acts as the catalytic active site for N adsorption, activation, and hydrogenation. Consequently, the as-synthesized BCN exhibits high visible-light-driven photocatalytic NRR activity, affording an NH yield rate of 313.9 µmol g h , nearly 10 times of that for pristine g-C N . This work would be helpful for designing and developing high-efficiency metal-free NRR catalysts for visible-light-driven photocatalytic NH synthesis.
石墨相氮化碳(g-C₃N₄)中暴露的活性氮原子(如边缘或氨基 N 原子)在光催化氮还原反应(NRR)过程中能否参与氨(NH₃)合成是一个重要问题。在此,本工作的实验结果表明,g-C₃N₄纳米片中暴露的活性 N 原子在可见光光催化 NRR 过程中确实可以被氢化并有助于 NH₃合成。然而,通过在 B 掺杂含量为 13.8 wt%的 g-C₃N₄纳米片(BCN)中进行 B 掺杂,这些暴露的 N 原子可以通过形成 BNC 配位而被牢固地稳定下来。此外,在 g-C₃N₄中形成的 BNC 配位不仅有效地增强了 g-C₃N₄对可见光的吸收并抑制了光生载流子的复合,还作为 N 吸附、活化和氢化的催化活性位点。因此,所合成的 BCN 表现出高的可见光驱动光催化 NRR 活性,NH₃产率为 313.9 µmol g⁻¹ h⁻¹,几乎是原始 g-C₃N₄的 10 倍。这项工作将有助于设计和开发用于可见光驱动光催化 NH₃合成的高效无金属 NRR 催化剂。