Suppr超能文献

用于高性能锂离子电池阳极的Ge@C复合材料的原位镁热还原合成

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes.

作者信息

Tran Huu Ha, Nguyen Ngoc Phi, Ngo Vuong Hoang, Luc Huy Hoang, Le Minh Kha, Nguyen Minh Thu, Le My Loan Phung, Kim Hye Rim, Kim In Young, Kim Sung Jin, Tran Van Man, Vo Vien

机构信息

Faculty of Natural Science, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, 55000, Vietnam.

Faculty of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, 11300, Hanoi, Vietnam.

出版信息

Beilstein J Nanotechnol. 2023 Jun 26;14:751-761. doi: 10.3762/bjnano.14.62. eCollection 2023.

Abstract

Metallothermic, especially magnesiothermic, solid-state reactions have been widely applied to synthesize various materials. However, further investigations regarding the use of this method for composite syntheses are needed because of the high reactivity of magnesium. Herein, we report an in situ magnesiothermic reduction to synthesize a composite of Ge@C as an anode material for lithium-ion batteries. The obtained electrode delivered a specific capacity of 454.2 mAh·g after 200 cycles at a specific current of 1000 mA·g. The stable electrochemical performance and good rate performance of the electrode (432.3 mAh·g at a specific current of 5000 mA·g) are attributed to the enhancement in distribution and chemical contact between Ge nanoparticles and the biomass-based carbon matrix. A comparison with other synthesis routes has been conducted to demonstrate the effectiveness of contact formation during in situ synthesis.

摘要

金属热还原反应,尤其是镁热还原固态反应,已被广泛应用于合成各种材料。然而,由于镁的高反应活性,对于该方法用于复合材料合成的进一步研究仍有必要。在此,我们报道了一种原位镁热还原法,用于合成作为锂离子电池负极材料的Ge@C复合材料。在1000 mA·g的特定电流下循环200次后,所得电极的比容量为454.2 mAh·g。电极稳定的电化学性能和良好的倍率性能(在5000 mA·g的特定电流下为432.3 mAh·g)归因于锗纳米颗粒与生物质基碳基体之间分布和化学接触的增强。已与其他合成路线进行了比较,以证明原位合成过程中形成接触的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d2/10315890/4418ce6e750d/Beilstein_J_Nanotechnol-14-751-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验