Suppr超能文献

合金化反应限制助力锂离子电池实现高容量且稳定的负极。

Alloying Reaction Confinement Enables High-Capacity and Stable Anodes for Lithium-Ion Batteries.

作者信息

Fang Shan, Shen Laifa, Li Shaopeng, Kim Guk-Tae, Bresser Dominic, Zhang Haiqian, Zhang Xiaogang, Maier Joachim, Passerini Stefano

机构信息

Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering , Nanjing University of Aeronautics and Astronautics , Nanjing , 210016 , P.R. China.

Helmholtz Institute Ulm (HIU) , Helmholtzstrasse 11 , 89081 Ulm , Germany.

出版信息

ACS Nano. 2019 Aug 27;13(8):9511-9519. doi: 10.1021/acsnano.9b04495. Epub 2019 Aug 1.

Abstract

The current insertion anode chemistries are approaching their capacity limits; thus, alloying reaction anode materials with high theoretical specific capacity are investigated as potential alternatives for lithium-ion batteries. However, their performance is far from being satisfactory because of the large volume change and severe capacity decay that occurs upon lithium alloying and dealloying processes. To address these problems, we propose and demonstrate a versatile strategy that makes use of the electronic reaction confinement the synthesis of ultrasmall Ge nanoparticles (10 nm) uniformly confined in a matrix of larger spherical carbon particles (Ge⊂C spheres). This architecture provides free pathways for electron transport and Li diffusion, allowing for the alloying reaction of the Ge nanoparticles. The thickness change of electrodes containing such a material, monitored byan electrochemical dilatometer, is rather limited and reversible, confirming the excellent mechanical integrity of the confined electrode. As a result, these electrodes exhibit high reversible capacity (1310 mAh g, 0.1C) and very impressive cycling ability (92% after 1000 cycles at 2C). A prototype device employing such an alloying electrode material in combination with LiNiMnCoO offers a high energy density of 250 Wh kg.

摘要

当前的插入型阳极化学体系正接近其容量极限;因此,具有高理论比容量的合金化反应阳极材料作为锂离子电池的潜在替代品受到了研究。然而,由于在锂合金化和脱合金化过程中发生的巨大体积变化和严重的容量衰减,它们的性能远不能令人满意。为了解决这些问题,我们提出并展示了一种通用策略,该策略利用电子反应限制,合成了均匀限制在较大球形碳颗粒(Ge⊂C 球)基质中的超小 Ge 纳米颗粒(10 纳米)。这种结构为电子传输和 Li 扩散提供了自由通道,允许 Ge 纳米颗粒发生合金化反应。通过电化学膨胀仪监测,含有这种材料的电极的厚度变化相当有限且可逆,证实了受限电极具有出色的机械完整性。结果,这些电极表现出高可逆容量(1310 mAh g,0.1C)和非常令人印象深刻的循环能力(在 2C 下 1000 次循环后为 92%)。采用这种合金化电极材料与 LiNiMnCoO 组合的原型器件提供了 250 Wh kg 的高能量密度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验