Chen Naiqi, Yang Kunming, Wang Ziyang, Zhong Boan, Wang Jingjing, Song Jian, Li Quan, Ni Jiamiao, Sun Fangyuan, Liu Yue, Fan Tongxiang
State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Institute of Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China.
ACS Appl Mater Interfaces. 2023 Jul 19;15(28):34132-34144. doi: 10.1021/acsami.3c00978. Epub 2023 Jul 5.
Interfacial bonding that directly influences the functional and mechanical properties of metal/nonmetal composites is commonly estimated by destructive pull-off measurements such as scratch tests, etc. However, these destructive methods may not be applicable under certain extreme environments; it is urgently necessary to develop a nondestructive quantification technique to determine the composite's performance. In this work, the time-domain thermoreflectance (TDTR) technique is applied to study the inter-relationship between interfacial bonding and interface characteristics through thermal boundary conductance () measurements. We think that interfacial phonon transmission capability plays a decisive role in influencing interfacial heat transport, especially for scenarios with a large mismatch of phonon density of states (PDOS). Moreover, we demonstrated this method at (100) and (111) cubic boron nitride/copper (c-BN/Cu) interfaces by both experimental and simulation efforts. The results show that the TDTR-measured of the (100) c-BN/Cu interface (30 MW/m·K) is about 20% higher than that of the (111) c-BN/Cu (25 MW/m·K), which is ascribed to that higher interfacial bonding of the (100) c-BN/Cu endows it with better interfacial phonon transmission capability. In addition, detailed comparison of 10+ other metal/nonmetal interfaces exhibits similar positive relationship for interfaces with a large PDOS mismatch but negative relationship for interfaces with a small PDOS mismatch. The latter one is attributed to that extra inelastic phonon scattering and electron transport channels abnormally promoting interfacial heat transport. This work may provide some insights into quantitatively establishing inter-relationship between interfacial bonding and interface characteristics.
直接影响金属/非金属复合材料功能和力学性能的界面结合通常通过划痕试验等破坏性拉脱测量来估算。然而,这些破坏性方法在某些极端环境下可能不适用;迫切需要开发一种无损量化技术来确定复合材料的性能。在这项工作中,应用时域热反射(TDTR)技术通过热边界电导( )测量来研究界面结合与界面特性之间的相互关系。我们认为界面声子传输能力在影响界面热传输中起决定性作用,特别是对于声子态密度(PDOS)失配较大的情况。此外,我们通过实验和模拟在(100)和(111)立方氮化硼/铜(c-BN/Cu)界面上演示了该方法。结果表明,(100)c-BN/Cu界面的TDTR测量的 (30 MW/m·K)比(111)c-BN/Cu界面的 (25 MW/m·K)高约20%,这归因于(100)c-BN/Cu更高的界面结合赋予其更好的界面声子传输能力。此外,对其他10多种金属/非金属界面的详细比较表明,对于PDOS失配较大的界面呈现相似的正相关关系,而对于PDOS失配较小的界面呈现负相关关系。后者归因于额外的非弹性声子散射和电子传输通道异常促进了界面热传输。这项工作可能为定量建立界面结合与界面特性之间的相互关系提供一些见解。