Suppr超能文献

具有宽带隙材料的导热界面的特性

Properties for Thermally Conductive Interfaces with Wide Band Gap Materials.

作者信息

Khan Samreen, Angeles Frank, Wright John, Vishwakarma Saurabh, Ortiz Victor H, Guzman Erick, Kargar Fariborz, Balandin Alexander A, Smith David J, Jena Debdeep, Xing H Grace, Wilson Richard

机构信息

University of California Riverside, Riverside, California 92521, United States.

Cornell University, Ithaca, New York 14850, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Aug 10;14(31):36178-36188. doi: 10.1021/acsami.2c01351. Epub 2022 Jul 27.

Abstract

The goal of this study is to determine how bulk vibrational properties and interfacial structure affect thermal transport at interfaces in wide band gap semiconductor systems. Time-domain thermoreflectance measurements of thermal conductance are reported for interfaces between nitride metals and group IV (diamond, SiC, Si, and Ge) and group III-V (AlN, GaN, and cubic BN) materials. Group IV and group III-V semiconductors have systematic differences in vibrational properties. Similarly, HfN and TiN are also vibrationally distinct from each other. Therefore, comparing of interfaces formed from these materials provides a systematic test of how vibrational similarity between two materials affects interfacial transport. For HfN interfaces, we observe conductances between 140 and 300 MW m K, whereas conductances between 200 and 800 MW m K are observed for TiN interfaces. TiN forms exceptionally conductive interfaces with GaN, AlN, and diamond, that is, > 400 MW m K. Surprisingly, interfaces formed between vibrationally similar and dissimilar materials are similarly conductive. Thus, vibrational similarity between two materials is not a necessary requirement for high . Instead, the time-domain thermoreflectance experiment (TDTR) data, an analysis of bulk vibrational properties, and transmission electron microscopy (TEM) suggest that depends on two other material properties, namely, the bulk phonon properties of the vibrationally softer of the two materials and the interfacial structure. To determine how depends on interfacial structure, TDTR and TEM measurements were conducted on a series of TiN/AlN samples prepared in different ways. Interfacial disorder at a TiN/AlN interface adds a thermal resistance equivalent to ∼1 nm of amorphous material. Our findings improve fundamental understanding of what material properties are most important for thermally conductive interfaces. They also provide benchmarks for the thermal conductance of interfaces with wide band gap semiconductors.

摘要

本研究的目标是确定在宽带隙半导体系统中,体振动特性和界面结构如何影响界面处的热传输。报告了氮化物金属与IV族(金刚石、碳化硅、硅和锗)以及III-V族(氮化铝、氮化镓和立方氮化硼)材料之间界面的热导时域热反射测量结果。IV族和III-V族半导体在振动特性方面存在系统性差异。同样,氮化铪和氮化钛在振动方面也彼此不同。因此,比较由这些材料形成的界面,可以系统地测试两种材料之间的振动相似性如何影响界面传输。对于氮化铪界面,我们观察到的热导在140至300 MW m⁻¹ K之间,而氮化钛界面的热导在200至800 MW m⁻¹ K之间。氮化钛与氮化镓、氮化铝和金刚石形成了异常高导电的界面,即热导大于400 MW m⁻¹ K。令人惊讶的是,由振动相似和不相似的材料形成的界面具有相似的导电性。因此,两种材料之间的振动相似性并非高界面热导的必要条件。相反,时域热反射实验(TDTR)数据、体振动特性分析以及透射电子显微镜(TEM)表明,界面热导取决于另外两个材料特性,即两种材料中振动较软的材料的体声子特性和界面结构。为了确定界面热导如何依赖于界面结构,对一系列以不同方式制备的氮化钛/氮化铝样品进行了TDTR和TEM测量。氮化钛/氮化铝界面处的界面无序增加了相当于约1纳米非晶材料的热阻。我们的研究结果增进了对哪些材料特性对于热传导界面最为重要的基本理解。它们还为与宽带隙半导体界面的热导提供了基准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验