Suppr超能文献

复杂性状和候选基因:多种遗传结构下遗传方差分量的估计。

Complex traits and candidate genes: estimation of genetic variance components across multiple genetic architectures.

机构信息

Department of Plant Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA.

International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, El Batán, 56130 Texcoco, Edo. de México, México.

出版信息

G3 (Bethesda). 2023 Aug 30;13(9). doi: 10.1093/g3journal/jkad148.

Abstract

Large-effect loci-those statistically significant loci discovered by genome-wide association studies or linkage mapping-associated with key traits segregate amidst a background of minor, often undetectable, genetic effects in wild and domesticated plants and animals. Accurately attributing mean differences and variance explained to the correct components in the linear mixed model analysis is vital for selecting superior progeny and parents in plant and animal breeding, gene therapy, and medical genetics in humans. Marker-assisted prediction and its successor, genomic prediction, have many advantages for selecting superior individuals and understanding disease risk. However, these two approaches are less often integrated to study complex traits with different genetic architectures. This simulation study demonstrates that the average semivariance can be applied to models incorporating Mendelian, oligogenic, and polygenic terms simultaneously and yields accurate estimates of the variance explained for all relevant variables. Our previous research focused on large-effect loci and polygenic variance separately. This work aims to synthesize and expand the average semivariance framework to various genetic architectures and the corresponding mixed models. This framework independently accounts for the effects of large-effect loci and the polygenic genetic background and is universally applicable to genetics studies in humans, plants, animals, and microbes.

摘要

大效应基因座——通过全基因组关联研究或连锁作图发现的与关键性状相关的统计学显著基因座,在野生和驯化植物和动物中,存在着以微小、通常难以察觉的遗传效应为背景的遗传效应。在植物和动物育种、基因治疗和人类医学遗传学中,准确地将平均差异和方差解释归因于线性混合模型分析中的正确成分对于选择优良后代和父母至关重要。标记辅助预测及其后继的基因组预测,对于选择优良个体和了解疾病风险具有许多优势。然而,这两种方法很少被整合用于研究具有不同遗传结构的复杂性状。这项模拟研究表明,平均半方差可以应用于同时包含孟德尔遗传、寡基因遗传和多基因遗传项的模型,并能准确估计所有相关变量的方差解释。我们之前的研究分别关注大效应基因座和多基因方差。这项工作旨在综合和扩展平均半方差框架,以适应各种遗传结构和相应的混合模型。该框架独立考虑了大效应基因座和多基因遗传背景的影响,并且普遍适用于人类、植物、动物和微生物的遗传学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0dd/10468314/f2c1a26d60a4/jkad148f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验