Suppr超能文献

不要进行两次最佳线性无偏预测。

Don't BLUP Twice.

作者信息

Holland James B, Piepho Hans-Peter

机构信息

USDA-ARS Plant Science Research Unit and Department of Crop and Soil Sciences and NC Plant Science Initiative, North Carolina State University, Raleigh, NC 27606, USA.

Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart 70599, Germany.

出版信息

G3 (Bethesda). 2024 Nov 19;14(12). doi: 10.1093/g3journal/jkae250.

Abstract

Large, complex data sets can be difficult to model in a single comprehensive genome-wide association study (GWAS). The best practice for two-stage analyses is to consider lines as fixed effects in the first stage statistical model. Best linear unbiased estimates of lines can then be used as input phenotypes to the second stage analysis. In the second stage, lines can be modeled as random effects with genomic relationships to adjust for population structure when estimating individual SNP effects in GWAS.

摘要

大型复杂数据集在单一全面的全基因组关联研究(GWAS)中可能难以建模。两阶段分析的最佳做法是在第一阶段统计模型中将品系视为固定效应。然后,品系的最佳线性无偏估计值可作为第二阶段分析的输入表型。在第二阶段,在GWAS中估计单个SNP效应时,品系可以建模为具有基因组关系的随机效应,以调整群体结构。

相似文献

1
Don't BLUP Twice.不要进行两次最佳线性无偏预测。
G3 (Bethesda). 2024 Nov 19;14(12). doi: 10.1093/g3journal/jkae250.
5
On pattern matching with mismatches and few don't cares.关于带有不匹配项和少量无关项的模式匹配。
Inf Process Lett. 2017 Feb;118:78-82. doi: 10.1016/j.ipl.2016.10.003. Epub 2016 Oct 27.
10
Choosing Wisely Canada - pediatric otolaryngology recommendations.明智选择加拿大-小儿耳鼻喉科学建议。
J Otolaryngol Head Neck Surg. 2021 Oct 29;50(1):61. doi: 10.1186/s40463-021-00533-x.

本文引用的文献

4
Statistical Models and Methods for Network Meta-Analysis.网络荟萃分析的统计模型与方法
Phytopathology. 2016 Aug;106(8):792-806. doi: 10.1094/PHYTO-12-15-0342-RVW. Epub 2016 Jul 5.
5
Genome-wide association mapping in plants.全基因组关联分析在植物中的应用。
Theor Appl Genet. 2015 Jun;128(6):1163-74. doi: 10.1007/s00122-015-2497-x. Epub 2015 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验